## KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

Department of Electrical Engineering

EE 204 (062)

Final Exam Monday June 11, 2007 7:00-9:30 pm Location OAB

Student Name :

Student ID# :

Instructor's Name:

Select your instructor's name from the following:

|           | Maximum<br>score | Score |
|-----------|------------------|-------|
| Problem 1 | 20%              |       |
| Problem 2 | 20%              |       |
| Problem 3 | 20%              |       |
| Problem 4 | 20%              |       |
| Problem 5 | 20%              |       |
| Total     | 100%             |       |

**Problem 1:** For the circuit shown, determine the current **i(t)** and the voltage **v(t)**.



# Problem 2:

Determine the voltage  $v_0(t)$  in the circuit shown.



### Problem 3:

The two loads  $\mathbf{Z}_1 \And \mathbf{Z}_2$  in the circuit shown are **described** by:

 $\mathbf{Z}_1$  absorbs  $\mathbf{12} \ \mathbf{kW}$  at  $\mathbf{0.9}$  lagging pf.

 $Z_2 = 4 + j 4 Ω.$ 

- a) Determine the current  $\hat{I_1}$
- b) Determine the current  $\hat{I_2}$
- c) Determine the **complex power**  $\hat{P}$  delivered by the source.
- d) Determine the **real power**  $P_{AV}$  delivered by the source.
- e) Determine the *reactive power* Q delivered by the source.



### Problem 4:

A balanced **Y** –  $\Delta$  connected three phase system as shown, has **V**<sub>ab</sub> = **208**  $\angle$ **45**° (**rms**). The per phase impedance of the load is  $\hat{Z}_{L} = 6\sqrt{2} \angle 45^{\circ} \Omega$ . Find the following:

- a) The **phase voltages** of the source.
- b) The **phase voltages** of the load.
- c) The line currents.
- d) The **total power** absorbed by the load.



#### Problem 5 (a,b,c and d):

a) The current  $\mathbf{i}_{\mathbf{L}}(\mathbf{t})$  through the 2H inductor is shown. Sketch the voltage  $\mathbf{v}_{\mathbf{L}}(\mathbf{t})$  for  $0 \le t \le 4s$ 



b) Calculate the RMS (effective) value of the periodic function f(t) shown in the figure below.



c) For the following circuit, the voltage  $v_x$  is: (circle only the currect answer)



- 2) 975 V
- 3) 525 V
- 4) 455 V
- 5) 273 V

d) The load in the circuit shown has a current  $I_L=200$  A at **pf=0.8** lagging, and a frequency **60Hz**. Calculate the value of the capacitor **C** to correct the power factor of

1365 V



8Ω

+

 $v_x$ 

**ζ**5Ω

20 Ω