KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS

Department of Electrical Engineering

EE 204 (062)
Final Exam
Monday June 11, 2007
7:00-9:30 pm
Location OAB

Student Name :

Student ID\# :

Instructor's Name:

Select your instructor's name from the following:

\square	Mr. Tasadduq (sections 1 \& 2)
Dr. Bakhashwain (section 3)	
	Mr. Johar (section 4)
Dr. Al-Ahmari (section 5)	
\square	Dr. Alakhdhar (section 6)

	Maximum score	Score
Problem 1	20%	
Problem 2	20%	
Problem 3	20%	
Problem 4	20%	
Problem 5	100%	
Total		

Problem 1:

For the circuit shown, determine the current $\mathbf{i}(\mathbf{t})$ and the voltage $\mathbf{v}(\mathbf{t})$.

Problem 2:

Determine the voltage $\boldsymbol{V}_{\mathbf{0}}(\mathbf{t})$ in the circuit shown.

Problem 3:

The two loads $\mathbf{Z}_{\mathbf{1}} \& \mathbf{Z}_{\mathbf{2}}$ in the circuit shown are described by:
\mathbf{Z}_{1} absorbs $\mathbf{1 2} \mathbf{k W}$ at 0.9 lagging pf. $Z_{2}=4+\mathbf{j} 4 \Omega$.
a) Determine the current \hat{I}_{1}
b) Determine the current \hat{I}_{2}

c) Determine the complex power \hat{P} delivered by the source.
d) Determine the real power $P_{A V}$ delivered by the source.
e) Determine the reactive power Q delivered by the source.

Problem 4:

A balanced $Y-\Delta$ connected three phase system as shown, has $\mathbf{V}_{a b}=\mathbf{2 0 8} \angle \mathbf{4 5}$ ($\mathbf{r m s}$).
The per phase impedance of the load is $\hat{Z}_{L}=6 \sqrt{2} \angle 45^{\circ} \Omega$. Find the following:
a) The phase voltages of the source.
b) The phase voltages of the load.
c) The line currents.
d) The total power absorbed by the load.

Problem 5 (a,b,c and d):

a) The current $\mathbf{i}_{\mathbf{L}}(\mathbf{t})$ through the 2 H inductor is shown. Sketch the voltage $\mathbf{v}_{\mathbf{L}}(\mathbf{t})$ for $0 \leq t \leq 4 s$

b) Calculate the RMS (effective) value of the periodic function $f(t)$ shown in the figure below.

c) For the following circuit, the voltage v_{x} is:
(circle only the currect answer)

1) 1092 V
2) 975 V
3) 525 V
4) 455 V
5) 273 V

d) The load in the circuit shown has a current $\boldsymbol{I}_{\mathbf{L}}=\mathbf{2 0 0} \mathbf{A}$ at $\mathbf{p f}=\mathbf{0 . 8}$ lagging, and a frequency $\mathbf{6 0 H z}$. Calculate the value of the capacitor \mathbf{C} to correct the power factor of the parallel combination of the capacitor and the load to unity ($\mathbf{p} \mathbf{f}=\mathbf{1}$).

