
Samir A. Al-Baiyat 

April  2005                                                                                                         The Arabian Journal for Science and Engineering, Volume 30, Number 1B 65 

 
 
 
 

DESIGN OF A ROBUST SVC DAMPING CONTROLLER 
USING NONLINEAR H∞ TECHNIQUE 

 

Samir A. Al-Baiyat * 

Electrical Engineering Department  
King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia 

 
 

 :ةــلاصـالخ

. )SVC( أمبير الساكن –لمعوض متغيرات فولت طي يستعرض هذا البحث تصميم نظام تحكم غير خ 
.  غير الخطي∞Hخدم في هذا النوع من التصاميم غير الخطية الطرق الحديثة من نظام ُـوقد است

وللوصول لهذه الطريقة فقد تم الجمع بين استخدام طريقة التغذية المرجعة للحالات لتحويل النظام غير 
جنب الحل المعقد تإن الطريقة المقترحة ت. الخطية للنظم ∞H الخطي إلى نظام خطي مع تطبيق طريقة

 .سحاقإ – جاكوبي –لمعادلة هاملتون 

من  -التي تم فيها إعادة نظم القوى إلى حالة الاسقرارية العابرة  -وقد تم تحليل الطريقة المقترحة  
حظ متانة الطريقة التي كذلك لو. خلال المحاكاة لحالات عديدة من نظم القوى خلال تعرضها إلى اضطراب

 .ر الاضطراباتستخدمت في البحث من خلال المحاكاة لمجال كبير في تغيا
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ABSTRACT 

This paper presents a nonlinear controller of Static Var Compensator (SVC). The 
nonlinear SVC controller is designed using the recently developed nonlinear H∞ theory. 
The approach combined state feedback exact linearization with linear H∞ principle, 
which avoids the difficulty solving the Hamilton–Jacoby–Issacs inequality. Simulation 
results with torque pulses and three phase faults on the generator show that the proposed 
controller can ensure transient stability of the power system in presence of major 
disturbances. The controller is also tested for a range of operating conditions 
considering a number of disturbances on the system. It is observed that the controller is 
very robust in providing good damping for a wide range of operation. 

Keywords: SVC controller, nonlinear robust control, H∞ control, global 
stabilization, power systems. 
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DESIGN OF A ROBUST SVC DAMPING CONTROLLER 
USING NONLINEAR H∞ TECHNIQUE 

1.  INTRODUCTION 

Recently, there has been a surge of interest in the development and use of Flexible AC Transmission Systems 
(FACTS) controllers in power transmission systems [1 – 6]. These controllers utilize power electronics devices to 
provide more flexibility to AC power systems. Flexibility is understood in the sense of the capability of a system to 
respond quickly to the control input and to change in its operating point. The most popular type of FACTS devices in 
terms of application is the SVC.  These devices are well known to improve power system properties such as steady state 
stability limits, voltage regulation and var compensation, dynamic over-voltage and under voltage control, and damp 
power system oscillations.  The SVC is an electronic generator that dynamically controls the flow of power through a 
variable reactive admittance to the transmission network. 

A survey on power systems control shows that most existing controllers are designed with assumption that the 
power systems have fixed structure and parameters. However, in power systems uncertainties always exist due to sudden 
load shedding, generation tripping, occurrence of faults, change of parameters, and network configuration. In order to 
attenuate the influence of such disturbances to systems, it is essential to design robust controllers. The problem of 
designing robust controllers for uncertain nonlinear systems attracted the attention of many researchers during the past 
two decades [7 – 11]. 

The objective of this paper is to design a robust controller for a single machine infinite bus system with a SVC 
installed at the middle of the transmission line. The design principle of the robust controller is based on the nonlinear H∞ 
control theory [7, 8]. The approach combined state feedback exact linearization with linear H∞ principle, which avoids 
the difficulty from solving Hamilton–Jacoby–Issacs inequality. Simulation studies of the proposed controller showed the 
effectiveness of the controller in damping the electromechanical oscillations for a wide range of operating conditions.   

2.  NONLINEAR H∞ CONTROL 

In this section, we briefly review some background material about H∞ control law that will be used in the paper. 

Consider the nonlinear system given by the following equations: 

1 2( ) ( ) ( )
( )

x f x g x w g x u
y h x
= + +
=

                                                                        (1) 

where x ∈  Rn is the state of the system, u ∈  Rm is the control input, w ∈  Rr is the disturbance signal, y ∈  Rp is the system 
output and the functions f, g1, g2 are smooth vector fields with f(0) = 0, and h(0) = 0.  

The nonlinear H∞ optimal control problem of system (1) is to find the smallest γ* > 0 and an associated control u* 
such that for ∀ γ > γ*  

2 2 22

0 0

( )             T  0
T T

y u dt w dtγ+ ≤ ∀ ≥∫ ∫                                                                        (2)  

holds and the closed loop system is stable. 

In order to construct a nonlinear H∞ controller, one needs to solve a partial differential inequality called Hamilton–
Jacoby–Issacs (HJI). It is well known that an exact explicit solution for HJI is almost impossible [9, 10].  To overcome 
the difficulty, one can transform the nonlinear system (1) into a linear system by feedback linearization [12–14], which 
reduce the problem into solving a well–known Riccati inequality [15]. An important concept in feedback linearization is 
relative degree which is given by the following definition. 

Definition : System (1) is said to have a relative degree r, if 

2

1
2

( ) 0             0  1

( ) 0  

k
g f

r
g f

L L h x k r

L L h x−

= ≤ < −

≠
                                               (3) 

where ( )r
fL h x denotes the rth order Lie derivative of h(x) along  f(x). 
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Now consider system (1), assume g1(x) = [g11(x)  g12(x), …, g1s(x)] and w =  [w1, …, ws]T. Let us also assume that the 
relative degree r of the system from the control u to the output y is equal to n, and the relative degree related to 
disturbance w1, …,ws are ρ1, …, ρs respectively, and denote ρ the minimum of ρ1, …, ρs, with ρ ≤ n.  

Let 
1

1 2( ),  z ( ),  ,  ( ),n
f n fz h x L h x z L h x−= = =                                             (4) 

or write to be z = T(x), and a state feedback  

( ) ( )v x x uα β= +                                                 (5) 

where 1 1
2( ) ( ),   and  (x) ( )n n

f g fx L h x L L h xα β− −= = , then system (1) can be transformed to the following system [11], 

2 1
( ) ( )T xz Az B v g x w
x

y Cz

∂
= + +

∂
=

                                                           (6) 

where A, B2, and C are matrices of dimensions n × n, n × 1 and 1 × n respectively. They are of the form 

[ ]2

0 1 0 . . . 0 0
0 0 1 . . . 0 0

,              ,          C 1 0 0 . . . 0. . . . . . .
0 0 0 . . . 1 0
0 0 0 . . . 0 1

A B .

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

.                                         (7) 

Further simplification for system (6) will be achieved by setting 

1

1

1

11 1

122
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2
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( ) . . ( )

. . . .
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. . . .
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x
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ρρ
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−−
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− −

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢⎢ ⎥ ⎢∂ ⎢ ⎥ ⎢= = ⎢ ⎥∂ ⎢⎢ ⎥ ⎢⎢ ⎥ ⎢⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥

.                                         (8) 

By using the relative degree, Equation (8) becomes 

1

21 1
11 11

11 1

1 1
11 1

0 . . 0
. . . .
0 . . 0

( ) ( ) . . ( )( ) .
.( ) . . ( )

. . . .

( ) . . ( )

g g sf f

g g sf f

s

n n
g f g s f

w
w

T x L L h x L L h xw g x w
x

L L h x L L h x
w

L L h x L L h x

ρ ρ

ρ ρ

− −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∂ ⎢ ⎥ ⎢ ⎥= =
⎢ ⎥∂ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥
⎣ ⎦

 .                                         (9) 

Then system (6) can be written as 

  2 1z Az B v B w
y Cz
= + +
=

                                                                       (10) 
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where  
( 1) ( 1) ( 1) ( 1)

1
( 1) ( 1) ( 1) ( 1)

0 0

0
n

n n n
B

I
ρ ρ ρ ρ

ρ ρ ρ ρ

− × − − × − +

− + × − − + × − +

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

                                            (11) 

Now designing a nonlinear robust control law u to stabilize the nonlinear system (1) is equivalent to designing a robust 
control v to stabilize the linear system (10). Solution of the robust control for the linear system (10) involves finding a 
nonnegative matrix P* as a solution for the following Riccati equation [15]: 

 1 1 2 22
1( ) 0T T T TA P PA P B B B B P C C
γ

+ + − + =  .                                                       (12) 

Then, the optimal control v* is given by 

 * *
2
Tv B P z= − .                                                 (13) 

Using Equations (13) and (5) the control law u* for the nonlinear system (1) is give by 

 * 1 *
2( )( ( ) ( ))Tu x x B P T xβ α−= − + .                                            (14) 

3.  POWER SYSTEM MODEL 

In this paper, a single machine infinite bus system (SMIB) with a SVC is shown Figure 1. The SVC is placed at the 
middle of the transmission line which is generally considered to be the ideal site. The synchronous generator is 
represented by the classical second order model. The SVC is considered as a shunt controllable reactive susceptance with 
time delay as shown in Figure 2. The system dynamics is described by the following Equations [3]: 

 
o( ) ( - )                                                               2 2

[ ]

o

o
m e

cL L Lo

DP PH H
KB B B K uT

δ ω ω
ωω ω ω

= −

= − −

= − + +

                                                        (15) 

where  

1 2 11 2
sin

 ( )
t

e
l l l L c

E V
P

x x x x B B
δ

′
=

+ + −
   .                                         (16) 

In Equations (15) and (16), 

δ  power angle of the generator (in radian)  

ω  relative speed (in radian)  

Pm mechanical input power (in p.u.) 

 Pe electric power of generator (in p.u.)  

D damping constant (in p.u.) 

H inertia constant of  generator (in sec.) 

xl1, xl2 reactances (in p.u.)  

E' transient EMF of generator (in p.u.) 

 Vt infinite bus voltage (in p.u.) 

BC susceptance of the equivalent capacitor (in p.u.) 

BL susceptance of the inductor in SVC (in p.u.) 

BLO initial value of the BL (in p.u.) 

K control gain of SVC (in p.u.)  

T time constant of SVC  
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Kc gain in the control loop (in p.u.). 

The values of these parameters are listed in the appendix. The mid-bus voltage Vm can be written as 

 
2 2

2 1 2( cos ) ( sin )l l t l
m

x E x V x EV δ δ′ ′+ +
= Σ                                                       (17) 

where  Σ = xl1+ xl2+ xl1 xl2 ( BL - BC ) 

 

 

   

 

 

 

 

 

Figure 1. Single machine system with SVC 

 

Figure 2. The SVC Model 

The dynamic of a synchronous generator, based on (15) and (16), can be written in a state space as 

  2( ) ( ) ( )
( ) ( )

x t f x g x u
y x h x

= +
=

                                                         (18) 

where 
 [ ]TLx Bδ ω=                                              (19) 

2 70 0 Tg c= ⎡ ⎤⎣ ⎦                                              (20) 

( )h x δ=                                               (21) 

1
1 2

1 3 2
4 5

3
6

( )
sin

( ) ( ) ( )
( )

( )
( )

o

m o
L c

L Lo

f x
c c

f x c p c f x
c c B B

f x
c B B

ω ω
δ

ω ω

⎡ ⎤−
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥= − − − = ⎢ ⎥⎢ ⎥+ −
⎢ ⎥⎢ ⎥ ⎣ ⎦− +⎢ ⎥⎣ ⎦

                                                    (22) 

Local 
Load 

G

SVC 

Vm Vt 

The remote 
system bus

E '
xl1 xl2 



Samir A. Al-Baiyat 

April  2005                                                                                                         The Arabian Journal for Science and Engineering, Volume 30, Number 1B 71 

and 

c1 =ωo/2H, c2 = E ′  Vt ,  c3=D/2H, c4 = xl1+xl2, c5= xl1xl2,  c6 =1 / T,  and c7 = Kc / T, . 
4.  FEEDBACK LINEARIZATION DESIGN APPROACH 

The development of the feedback linearization techniques provides a powerful tool for the design of controllers for 
nonlinear systems. Since it avoids the local nature of approximate linearization and transforms the nonlinear systems to 
linear ones over a wide range, it has been applied to power systems by many researchers in recent years [16 – 18]. In this 
section we will discuss the design principle based on feedback linearization. The first step in the design procedure is the 
establishment of the linearizability condition for the SMIB system given in the preceding section. The Lie derivatives 
needed to check the linearizability condition are 

 

2 1 2 5 7 1
2

4 5 3

( ) 0

( ) 0

sin
( ) .

[ ( )]

g

g f

g f
c

L h x

L L h x

c c c c x
L L h x

c c x B

=

=

=
+ −

                                                            (23) 

Hence the SMIB system has relative degree r = 3, which is equal to the system order. It was shown in [11] that if a 
nonlinear system of the form given in (15) has relative degree r = n where n is the system order, then the nonlinear 
system can be transferred into a linear system of the form  

 2z Az B v
y Cz
= +
=

                                               (24) 

where the matrices A, B2, and C are given in (7). Clearly the single machine system given in preceding section can be 
transformed into a linear system. One such a transformation is given by 

1 1 1

2 2 2

1 2 1
3 3 1 3 2

4 5 3

( )
( )

sin
( )

( )

o

m
c

z T x x
z T x x

c c x
z T x c P c x

c c x B

δ
ω ω

= = =
= = − =

= = − −
+ −

                                                        (25) 

and the associated linearizing control law is given by 

 ( ) ( )v x x uα β= +                                               (26) 

where 

1 2 5 7 1
2

4 5 3

sin
( )

[ ( )]c

c c c c x
x

c c x B
β =

+ −
                                             (27) 

and 

1 2 5 11 2 1
1 3 2 32

4 5 3 4 5 3

sincos
( ) ( ) ( )

( ) [ ( )]c c

c c c xc c x
x f x c  f x f

c c x B c c x B
α

⎡ ⎤
= − − −⎢ ⎥

+ − + −⎢ ⎥⎣ ⎦
                                                    (28) 

The transformed system dynamics, in the new state space coordinate, are given by 

[ ]

0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 .

z z v

y z

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

=

                                                          (29) 

Having transformed the SMIB (15) into a linear system, a controller can now be designed via any linear design 
technique. An important point to be noticed is that the linear system in (29) is independent of the operating point of the 
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system. This is of great importance in power system design. Figure 3 shows the block diagram for the transformed 
system. 

( )LBT ,,ωδ( )VBT L ,,,1 ωδ−

mP

1+Ts
KC

DHs
o

+2
ω

s
1

eP
δω

V

ZuLB

 
Figure 3.  Block diagram of the transformed power system model 

5.  ROBUST CONTROLLER DESIGN 

Many dynamical systems encountered in practice may not be adequately described by differential equations, 
because of the existence of uncertainties such as parameter variation and exogenous disturbances. Power systems are no 
special of dynamical systems where uncertainties always exist. Causes for uncertainties may attribute to sudden load 
changes, generation tripping, occurrence of faults, change of parameters, and network configuration, etc. In order to 
attenuate the influence of such disturbances to systems, it is essential to design a robust controller. 

In the SMIB system with SVC given in Equations (15) and (16), two types of disturbances will be considered. The 
first disturbance is w1 which represents torque disturbance acting on the rotating shaft of the generator, while the second 
disturbance w2 represents the output current of the SVC. Therefore, the robust control of the SMIB system with SVC can 
be rewritten as  

 1

2

( ) ( )                                                                 
2 2 2

K[ ]
T

o

o o
m e o

L L Lo c

DP P w
H H H

KB B B K u w
T

δ ω ω
ω ω

ω ω ω

= −

= − − − +

= − + + +

                                                      (30)    

1 2 1 2

 
sin                             

 ( )
t

e
l l l l L c

E V
P

x x x x B B
δ

′
=

+ + −
 .                                                     (31) 

System (30) can be written as, 

 2 1( ) ( ) ( )x f x g x u g x w= + +                                                          (32) 

where g2(x) and f(x)  are given in (20) and (22) respectively while g1(x) is given as 

 1 1

5

0 0
( ) 0

0
g x c

c

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 .                                             (33) 

Choose the output, 

 δ== )(xhy                                                (34) 

and since the relative degree of the system from u to y was obtained in the preceding section to be 3, from Section 2 
we have 
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[ ]
11 12

11 12

11 12

11 12

2 2

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

g g

g f g f

g f g f

L h x L h x
T xw g x g w L L h x L L h x

x
L L h x L L h x

⎡ ⎤
⎢ ⎥∂ ⎢ ⎥= =

∂ ⎢ ⎥
⎢ ⎥
⎣ ⎦

    .                  (35) 

Calculating the elements of the above matrix yields 

11 12 12

11 11

12

2
1 1 3

2 2 5 7 1
2

4 5 3

( ) ( ) ( ) 0

( )                   ( )

sin
( )

[ ( )]

g g g f

g f g f

g f
c

L h x L h x L L h x

L L h x c L L h x c c

c c c x
L L h x

c c x B

= = =

= = −

=
+ −

 .                                                                   (36) 

Clearly from (36) the relative degrees ρ1 and ρ2 from w1 and w2 to y are 2 and 3 respectively. By taking ρ to be the 
minimum of the two relative degrees, then the matrix B1 in (11) is given by 

 1

0 0 0
0 1 0
0 0 1

B
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

   .                                              (37) 

Through coordinate transformation of system (25) and state feedback control law (26), the system in (30) can be 
transformed into, 

2 1z Az B v B w
y Cz
= + +

=
                                              (38) 

where  

[ ]

1 2

0 1 0 0 0 0 0
0 0 1               0 1 0             0
0 0 0 0 0 1 1

1 0 0 .

A B B

C

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

=

                                          (39) 

Designing a nonlinear robust control law u to stabilize the power system with uncertainties in (30) is equivalent to 
designing a robust control law v for the linear system in (38). The optimal control law then is given by, 

 zPBv T ∗∗ −= 2                                                 (40) 

where the positive definite matrix P* is a solution to the Riccati Equation (12). Once v* is determined, then the nonlinear 
control u is computed using (26). 

6.  SIMULATION RESULTS 

In order to show the validity of the approach described in this paper, several simulations were performed for 
SMIB system with a SVC given in Figure 1. The system data is given in the Appendix. The control was tested for cases 
given below. 

In the first case the disturbance is assumed to be a self-clearing three-phase fault for 0.1 second on the remote 
bus for loading condition of 0.8pu output power, load angle, angular speed and the mid-bus voltage are shown in Figures 
4, 5 and 6 respectively. In the second case the system was driven to more sever condition by applying a 50% input torque 
pulse to the generator for 0.1 second and a pulse disturbance of 50% to the SVC for the same period in addition to the 
three phase fault. The responses are given in Figures 7, 8, and 9. The simulation results indicate that the proposed 
controller is quite effective in damping the transient oscillations and in managing stronger disturbances. Finally the 
system was simulated for a number of operating conditions as shown in the plot of the rotor power angle in Figure 10. It 
can be observed that the robust controller provides very good overall damping over a wide range of operating conditions. 
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Figure 4. Variation of rotor power angle following three-phase fault cleared in 0.1 The generator was loaded to Po = 0.8 p.u. 
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Figure 5. Variation of rotor speed following three-phase fault cleared in 0.1 The generator was loaded to Po = 0.8 p.u. 



Samir A. Al-Baiyat 

April  2005                                                                                                         The Arabian Journal for Science and Engineering, Volume 30, Number 1B 75 

 
Figure 6. Variation of mid-bus voltage following three-phase fault cleared in 0.1 The generator was loaded to Po = 0.8 p.u. 

 
Figure 7. Variation of rotor angle following three-phase fault cleared in 0.1 and 50% input torque pulse to the generator for 

0.1 and a pulse disturbance of 50% to the SVC. The generator was loaded to Po = 0.8 p.u. 
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Figure 8. Variation of rotor speed following three-phase fault cleared in 0.1 and 50% input torque pulse to the generator for 

0.1 and a pulse disturbance of 50% to the SVC. The generator was loaded to Po = 0.8 p.u. 

 
Figure 9. Variation of mid-bus voltage following three-phase fault cleared in 0.1 and 50% input torque pulse to the generator 

for 0.1 and a pulse disturbance of 50% to the SVC. The generator was loaded to Po = 0.8 p.u. 
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Figure 10. Variation of rotor power angle for various loading conditions following three-phase fault cleared in 0.1. 

 
Figure 11. Comparison of rotor angle characteristics with PI and proposed controllers following three-phase fault cleared 

in 0.1 – at a nominal loading of 0.8 (a) PI control; (b) proposed control 
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7.  EVALUATION OF THE ROBUST CONTROLLER DESIGN 

 The effectiveness of the proposed robust controller in damping power system oscillations is evaluated through a 
comparison with a conventional PI controller. The gains of controller were selected based on a pole-placement technique 
[19]. The method produces an optimum control function for linear system designed for a specific operating point. The 
transfer function of a PI controller is given as, 
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Here, KP, and KI are the gains in the proportional and integral loops. Often a washout is added in cascade to the 
controller to eliminate any unwanted steady state signal. The controller transfer function than can be written as  
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where, Tw is the washout time constant. 

 The PI gains were determined so as to provide the closed-loop compensated system a damping ratio of 0.35 
corresponding to the dominant eigenvalues –1.9 ± j 5.1. The damping ratio is large for normal power system operation, 
and was intentionally chosen to give a worse scenario for the proposed robust controller. The washout time constant was 
selected to be 1 sec. The gains at a nominal operating point corresponding to power output of 0.8 pu were obtained as,  

KP = – 0.1128 

KI = 5.648                      (43) 
Figure 11 gives comparison of the rotor angle variations following a self-clearing type three-phase fault on the remote 
bus for duration of 0.1 second. Curves ‘a’ and ‘b’ show the responses with the PI and the robust controllers, respectively. 
Though the PI controller has been designed to perform optimally at this loading, it is apparent from the curves that the 
response with the robust control design is superior to the PI control design. Figure 12 shows a comparison of the 
response with the PI and proposed robust controller for an off-nominal loading of 1 pu. It can be observed that response 
with PI control is deteriorated. For loadings beyond 1.1 pu, the PI controller gives unstable response.  The robust 
controller, however, performs well for ranges of operating points which are quite far from the nominal one.      

 
Figure 12. Comparison of rotor angle characteristics with PI and proposed controllers following three-phase fault cleared 

in 0.1– at loading of 1.0 (a) PI control; (b) proposed control 
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CONCLUSIONS 

Robust stabilizing controller for a single machine infinite-bus system with a SVC has been developed. A more 
realistic power system model has been used. The model has the advantages that it takes into account the uncertainties in 
the system. The controller was designed using the H∞ technique. The proposed controller is shown to be effective and 
robust in suppressing large disturbances, as well as enhancing the system stability. It is also very effective for a range of 
operating conditions of the power system. 
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APPENDIX 

The power system data are as follows: 

H=6.0 sec, D=.0055, K=1.2, T = 0.2, xl = 0.45 p.u, x2 = 0.3 p.u, ωo = 377.0, E'= 1.1, Vt =1, Blo = 0.58, Bc = 0.8. In the robust 
control γ is set to be 0.1. 
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