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ABSTRACT 
 

The unified power flow controller (UPFC) is a FACTS device, which can be used to control the power flow on a 
transmission line. This is achieved by regulating the controllable parameters of the system: the line impedance, the 
magnitude and phase of the bus voltage. In addition to control of real and reactive power flow, the UPFC can be 
employed to enhance power system damping by modulating the converter voltages. This article presents design of a 
robust damping control strategy for the series converter voltage magnitude. A relatively new ‘loop-shaping’ graphical 
strategy has been used to implement the H-∞ based robust performance and stability measures. The control designed 
has been tested on a single machine infinite bus system for different disturbance conditions. Test results indicate that 
the proposed robust controller damps the system transient very effectively over a good range of operation. 
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INTRODUCTION 
 
The unified power flow controller (UPFC) is a multi-
function FACTS device. The usual form of the device 
consists of two voltage source converters, which are 
connected through a common DC link capacitor. The 
first voltage source converter known as static 
synchronous compensator (STATCOM) injects an 
almost sinusoidal current of variable magnitude at the 
point of connection. The second voltage source 
converter known as static synchronous series 
compensator (SSSC) injects a sinusoidal voltage of 
variable magnitude in series with the transmission line. 
The real power exchange between the converters is 
affected through the common DC link capacitor. In the 
UPFC, the STATCOM and the SSSC are simply 
connected at their terminals so that each can act as the 
appropriate real power source or the sink for the other. 
The concept is that the SSSC will act independently to 
regulate power flow on the line, and the STATCOM 
will satisfy the real power requirements of the SSSC 
while regulating the local bus voltage [1, 2].  
UPFC can be used for power flow control, loop flow 
control, load sharing among parallel corridors, 
providing voltage support, enhancement of transient 
stability, mitigation of system oscillations, etc. [3,4]. It 
can control all three basic power transfer parameters – 
line impedance, voltage magnitude and phase angle 
independently or simultaneously in any appropriate 
combinations. The stability and damping control aspect 
of an UPFC has been investigated by a number of 
researchers. The additional damping control circuits can 
be installed along with the normal power flow 
controllers. The signals employed are the magnitudes 
and phase angles of line voltages of the shunt and series 
converters [5,6].  Most of the control studies are based 
on linearized models of the nonlinear power system 

dynamics. Seo, et al, examined the robust controller 
design for small signal stability [7]. One of the 
important control objectives is to design a controller, 
retaining the system nonlinearities, which will provide 
satisfactory response over a wide range of operation.  

 This article presents a robust damping controller for the 
series voltage magnitude using a relatively new graphical 
method called ‘loop-shaping’. The fixed parameter series 
voltage controller designed satisfying the robust stability 
and performance measures. The controller was tested on 
a single machine infinite bus system and was observed to 
provide excellent damping characteristics for a very good 
range of operation. 
 

THE SYSTEM MODEL 
 
Fig. 1 shows a single machine system connected to a 
large power system bus through a transmission line 
installed with UPFC. The UPFC is composed of an 
excitation transformer (ET), a boosting transformer (BT), 
two three-phase GTO based voltage source converters 
(VSC), and a DC link capacitor [3, 7]. In the figure, m 
and α refer to amplitude modulation index and phase 
angle of the control signal of the two VSCs (E and B), 
respectively. 
The d-q components of the three phase currents of the 
input circuit (E) are written as, 
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VE is the AC voltage at the sending end of the 
transmission line. Neglecting the input converter 
harmonics, the following equations can be written 
relating the amplitudes of the voltage vector components 



at the input converter (E) to the capacitor voltage on the 
common DC link:  

 eEd = mE Vc cosαE           (2) 
 eEq = mE Vc sinαE           (3) 
αE is the phase angle difference between the input 
converter AC voltage eE and the line voltage VE. The 
factor mE is the modulation index of the input converter. 
The instantaneous powers at the AC and DC terminals 
of the input and output converters are equal if the 
converters are assumed to be lossless. This gives two 
power balance equations in per unit:  
 
 Vc Ii = eEdIEd + eEqIEq           (4) 
  Vc Io = eBdILd + eBqILq.          (5) 
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Fig.1 A single machine system with UPFC in one of the 
transmission lines 

 
Since the net current to the capacitor is zero, the DC 
link circuit can be described by the equation as, 
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c II

dt
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C +=          (6) 

The d-q components of the series injected voltage 
relating with the DC link voltage can be expressed as, 
 
 eBd = mB Vc cosαB         (7) 
 eBq = mB Vc sinαB         (8) 
 
αB is the angle between eB and VE, and mB is the 
modulation index of the output converter. The 
transmission circuit equations including the series 
transformer of the UPFC can be expressed in d-q axes 
as, 
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The voltages and the currents are indicated in Fig.1. 
Recognizing that, 
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and substituting equations (4-5) and (7-8), (6) can be 
rewritten as, 
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The synchronous generator-exciter system is 
represented through the 4th order dynamic model,  
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Expressing the generator power output and the terminal 
voltages in terms of d-q components of shunt and series 
currents (IE, IL), the composite synchronous generator-
UPFC system can be expressed through the 9th order 
dynamic equation, 
 ],[ uxfx =D            (13) 
Here the state vector comprises of [IEd IEq ILd ILq Vc δ  ω 
eq

’ Efd] and the 4 controls are [mE αE  mB αB]. 
 
DESIGN OF ROBUST CONTROLLER 
 
The damping control problem for the nonlinear power 
system model is stated as: given the system represented 
by the 9th order nonlinear set of equations (13), design a 
controller whose output u will stabilize the system 
following a perturbation in the system. Since there is no 
general method of designing a stabilizing controller for 
the nonlinear system, one way would be perform the 
control design for a linearized system, the linearization 
being carried out around a nominal operating condition. 
If the controller designed is ‘robust’ enough to perform 
satisfactorily for the other operating conditions in the 
vicinity of the nominal point, the design objectives are 
met. The linearized system of state equations are 
written as, 
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The changes in operating points of the nonlinear system 
(13) can be considered as changes in the elements of the 
system matrices in (14). These perturbations are 
modeled as uncertainties and robust design procedure is 
applied to the perturbed linear systems. The design is 
carried out using a graphical construction procedure 
called ‘loop-shaping’ satisfying the robust stability and 
performance measures. A brief theory of the uncertainty 
model, the robust stability criterion, and the graphical 
design technique are presented in the following.  
 
A. The Uncertainty Modeling  
 
Suppose that the linearized plant having a nominal 
transfer function P belongs to a bounded set of transfer 



functions PPPP. Consider that the perturbed transfer 
function resulting from the variations in operating 
conditions can be expressed in the form 

  PWP )1( 2

~
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Here, W2 is a fixed stable transfer function, also called 
the weight, and Ω is a variable transfer function 
satisfying 

∝
Ω < 1. The infinity norm (∝ -norm) of a 

function is the least upper bound of its absolute value, 
also written as 

∝
Ω  = )(sup ω

ω
jΩ , and is the largest 

value of gain on a Bode magnitude plot. In the 
multiplicative uncertainty model (15), ΩW2 is the 
normalized plant perturbation away from unity. If 

∝
Ω < 1, then, 

 | 1)j(P/)j(P~ −ωω ωω ∀≤ ,)j(W 2    (16) 
 

So, )j(W2 ω  provides the uncertainty profile and is 
the upper boundary of all the normalized plant transfer 
functions away from unity in the frequency plane [8].  
 
 
B. Robust Stability and Performance 
 

 
 
 
 
 
 
 
 

 
Fig.2 The plant-controller configuration for robust 

design 
 

Consider a multi-input control system given in Fig.2. A 
controller CR provides robust stability if it provides 
internal stability for every plant in the uncertainty set PPPP.  
If L denotes the open-loop transfer function (L=PCR), 
then the sensitivity function S is written as, 
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For a multiplicative perturbation model, robust stability 
condition is met if and only if 

∝
TW2 < 1 [7,8]. This 

implies that, 

| 1)(/)(~ −ωω jPjP nom | < 1, for all ω   (18) 
T is the complement of S, and is the input-output 
transfer function. The maximum loop gain, ∝− TW2  

is less than 1 for all allowable Ω, if and only if the small 
gain condition ∝TW2 < 1 holds. The nominal 
performance condition for an internally stable system is 

given as ∝SW1 < 1, where W1 is a real-rational, 
stable, minimum phase transfer function, also called a 
weighting function. The robust performance condition 
is, 

∝TW 2 < 1,   
TW

SW

2

1

1 Ω+
< 1,   ∀||Ω||<  1.    (19) 

Combining all the above, it can be shown that a 
necessary and a sufficient condition for robust 
performance is [8], 
 

∝
+ TWSW 21  < 1        (20) 

 
C. The Loop-Shaping Technique 
 
Loop-shaping is a graphical procedure to design a 
proper controller CR satisfying the robust stability and 
performance criteria given above. The basic idea of the 
method is to construct the loop transfer function L to 
satisfy the robust performance criterion approximately, 
and then to obtain the controller from the relationship 
CR =L/P. Internal stability of the plants and properness 
of CR constitute the constraints of the method. 
Condition on L is such that PCR should not have any 
pole zero cancellation. 
A necessary condition for robustness is that either or 
both |W1|, |W2| must be less than 1[9]. If we select a 
monotonically decreasing W1 satisfying the other 
constraints on it, it can be shown that at low frequency 
the open-loop transfer function L should satisfy, 
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while, for high frequency, 
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At high frequency |L| should roll-off at least as 
quickly as |P| does. This ensures properness of CR. The 
general features of the open loop transfer function is 
that the gain at low frequency should be large enough 
for the steady state error, and |L| should not drop-off too 
quickly near the crossover frequency resulting in 
internal instability. 

 
IMPLEMENTATION OF ROBUST CONTROL 

 
Of the four controls identified for a UPFC, mB and αE 
have been found to provide damping to the system, 
effect of mB being more predominant.  In the collapsed 
plant-controller configuration of Fig.2, P is constructed 
such that voltage modulation index of the series 
converter (mB) is the input and the generator speed 
deviation (∆ω) is the plant output.  The nominal loading 
of the generator is 1.01 pu at  0.94 power factor lagging. 
The nominal plant transfer is obtained as, 
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where, the non-zero zeroes and poles of the system are 
[-3098.4,-19.58, -27±j364.15, -0.22±0.743], [-19.72,-

CR P 
x

z
- 

y 



28.08 ± 2790.3, -9.4 ± 377.506, -0.212 ± 4.15, -0.25 ± 
0.75], respectively. 

Off-nominal power output between the range of 0.3-1.4 
pu and power factor greater than 0.8 which gave steady 
state stable situations were considered in the robust 

design. The quantity | 1)(/)(~ −ωω jPjP nom | is 

constructed for each perturbed plant )(~ ωjP  and the 
upper envelope in the frequency plane is fitted to the 
function, 
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A Butterworth filter satisfying the properties of W1(s) is 
selected as, 
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Values of Kc=0.01 and fc=0.1 were observed to be 
satisfy the requirement on the open loop transfer 
function L. For W1 and W2 selected above, the open-
loop function L  and the frequency response boundaries 
are plotted in Fig.3. The controller transfer function 
then obtained through the relation CR=L/P is, 
 
 

0.01)s(s
.5)00.1)(s100(s-(s)C R +

++=        (26) 

The robust and nominal performance measures given in 
(19) and (20) are shown in Fig.4. It can be observed that 
the nominal performance measure is very small relative 
to 0 db. The robust stability measure is marginally 
violated at the corner frequency. This is for a worst-case 
design in the absence of damping term in the 
electromechanical swing equation.  
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Fig.3  The open-loop function and the frequency 

boundaries 
 

While selecting the open-loop transfer function, the 
internal stability of the plant in addition to the design 
criterion (19)-(22) had to be checked. A disturbance of 
50% input torque pulse for 0.1 second on the generator 

shaft was simulated for this purpose. The rotor angle 
variations of the generator for the nominal operating 
point with and without the robust controller are plotted 
in Fig. 5. As can be observed, the robust controller 
provides extremely good damping to the rotor 
oscillations. 
The robust controller was then tested for its damping 
characteristics for a number of loading conditions and 
for different disturbances. Figure 6 shows the rotor 
angle variations of the generator for 4 different loadings 
with a 50% toque pulse disturbance for 0.1s duration. 
The generator loadings considered are 1.01, 0.85, 0.67, 
and 0.45 pu, respectively. 
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Fig.4 Convergence of robust performance and stability 
indices
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Fig.5 Rotor angle response of the generator at nominal 
operation with, (a) no extra UPFC control, (b) robust 

series voltage magnitude control. 
 

Fig.7 shows the rotor angle variations for three-phase 
faults on the remote bus for 0.2 second. The different 
loading conditions considered are 1.3, 1.01, 0.85, 0.66, 

1/W2

L 

W1/[1-W2] 

TWSW 21 +

SW1



and 0.45, respectively. It can be observed that good 
damping properties are exhibited for all the loading 
conditions. While the controller could be designed to 
provide even more damping, this could result in 
significant steady state errors. 
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Fig.6 Generator rotor angle variation with robust 
damping control of series voltage magnitude for (a) 

Pe=1.01 pu, (b) Pe=0.85 pu, (c) Pe=0.67 pu, (d) Pe=0.45 
pu. The disturbance is a 50% torque pulse for 0.1s. 
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Fig.7   Generator angle variations following a three-

phase fault for 0.2s duration with robust controller. The 
responses are for 1.3, 1.01, 0.85, 0.67, and 0.45 pu 

power outputs, respectively. 
 
 

CONCLUSIONS 
  
A robust design of a damping controller for the series 
voltage magnitude of a UPFC on a single machine 
system is proposed. A graphical loop-shaping technique 
has been employed to select the open loop transfer 
function subject to satisfaction of H-∞ based robust 
stability and performance measures. The controller 
designed was tested for a number of disturbance 
conditions including symmetrical three-phase faults. 
The robust design has been found to be very effective 
for damping control over a wide range of operating 

conditions of the power system. The graphical loop-
shaping method utilized to determine the controller 
function is simple and is straightforward to implement.  
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