NORTHROP GRUMMAN DEFINING THE FUTURE

Space Technology

Engineering Education Requirements in a Rapidly-Changing Global Environment

Dwight C. Streit

Outline

- Northrop Grumman Overview
- Engineering Education Infrastructure Issues
- U.S. Engineering Leadership
- Aerospace Engineering Pressures
- Engineering Career Options
- University Research Importance
- Engineering Education Collaboration

Northrop Grumman Corporation

Electronic **Systems**

Information Technology Integrated **Systems**

Ship Systems/ **Newport News**

Mission **Systems**

Space Technology

- Airborne Radars
- C⁴ISR
- Electronic Warfare
- Navigation & Guidance

- C⁴ISR
- Government IT Infrastructure
- Information Security/ Assurance

- Tactical Aircraft
- Long Range
- Unmanned
- Airborne Early Warning & Surveillance
- Naval Systems Integrator
- Aircraft Carriers
- Attack Submarines
- Command.
 - Control and Intelligence
 - Digitized Battlefield
 - ICBM Systems Integration

- Intelligence, Surveillance. Reconnaissance
- Electronic **Systems**
- Military Satcom
- Scientific Satellites
- Software Radios

\$30B Company with 125,000 People All 50 States and 24 Foreign Countries

STL \longrightarrow TRW \longrightarrow NGST Space Technology Since 1957

2005 ASEE Annual Conference & Exposition

Fleet Sat Com

TDRSS

EOS

HERMES

MILSTAR

Pioneer

Recent Space Technology Satellites for NASA

Chandra X-Ray Telescope Launched 1999 Aqua Earth Observing Satellite Launched 2002 Aura Earth Observing Satellite Launched 2004

Engineering Education Infrastructure Issues

- Offshore movement of high technology resources
 Semiconductors, chemicals, IT, services
- Education infrastructure problems

 Middle and secondary school pipeline
 U.S.-based engineering enrollments

- Immigration issues
 - Reduced foreign applications to U.S. graduate schools
- Future aerospace workforce
 - Fewer graduates aggrevated by upcoming retirements

Semiconductor Fabs Migrating Offshore

- Semiconductor fabs moving to Asia
 - Design services now also in transition
 - R&D will follow design & manufacturing

- Negative impact to U.S. engineering leadership
 Semiconductors remain a critical enabling technology
- Future impact to government and aerospace
 - Microelectronics leadership is key to national defense
 - Access to specialized chips may be affected
 - Impact is near but not yet hard felt

Semiconductor Leadership Moving to Asia

Off-Shore Movement of Chemical Plants

- Chemical manufacturing moving from U.S. to Asia
 Over the past ten years, few new plants built in the U.S.
 but hundreds built in China
- This is an ominous sign

 Technology follows manufacturing
 U.S. chemical leadership at risk

- Future impact to government and aerospace
 - New chemicals enable new high tech materials
 - Chemical access in times of need may be impacted

Increased Demands on Energy Production

Oil Discovery

Oil Production

"New assessments of global oil reserves show the world faces a relentless oil-supply crisis within the next ten years." Hunter Herron, President, Petroleum Equities Inc. (July 2000)

Erosion of U.S. Leadership in Engineering

- Lack of federal investment in basic research
 Fundamental change with long-term implications
- Investment shift from engineering to biology
 STEM investment has remains virtually flat
 - Bio investment has doubled over past ten years
- Restrictive immigration policies
 - Foreign applications to US graduate schools down 28%
 - Applications from China down 45% in 2004
 - Unintended consequence: retained talent abroad

Lamar Alexander, *Science* 18 Feb 2005 Chair, Senate Subcommittee on Education

Continued Erosion in Math and Science Skills

- Well-known issue remains unresolved
 - Problem-solving skills of American grade-10 students significantly lower than peers in 25 countries
- Problem is systemic but teachers are key
 - Need to create highly-qualified teaching force
 - 260,000 new high school science and math teachers needed by 2008 school year
- Business, education and government collaboration
 Long-term tactics needed to solve systematic problem

Urgent Need to Fill the Intellectual Pipeline

- Engineering and scientific intellectual capital
 - Need to attract more US students to STEM programs
 - Need to continue to attract the best foreign scholars
- Success requires collaboration at all levels

 Business, education and government policy leaders
 Advance the development of educational systems

$$K-5 \rightarrow 6-8 \rightarrow 9-12 \rightarrow B.S./M.S. \rightarrow Ph.D.$$

Offramps from STEM Career Path

Interesting Comparisons

Total 2004 U.S. trade deficit: \$666B

- 2004 with China: \$162B (advanced technology: \$36B)
- Marshall plan: \$90B total over 4 yrs (today's dollars)

B.S. Engineering Graduates

	1994	2004
U.S.	73,000	65,000
China	60,000	325,000

Total 4 year cost for 65,000 B.S. engineers ~ \$13B
 One week's trade deficit pays for all U.S. graduates!

Aerospace Engineering Pipeline Constricted

- Aerospace industry faces shortage of engineers

 Feb 2004: 50-year low in aerospace employment
 Now increasing, but talent pipeline is not sufficient
- Aerospace science and engineering positions
 - 9% of funded positions going unfilled
 - 27% eligible for retirement by 2008
 - Lack of qualified candidates

Collaboration again required to solve the problem
 Government, industry and universities must work together

Aerospace Economy in Southern California

- Manufacturing employment in So. Calif. ~ 1,000,000
- Aerospace employment in So. Calif. ~ 200,000
- Business areas with highest 2004 growth rates in Southern California
 - Aerospace
 - International Trade
 - Tourism

Southern California USG Prime Contracts (\$B)

The Future for Engineering Graduates

Most graduates will not be "engineers" in 25 years

Engineering Career Options

University Research is Key to the Future

- Corporate R&D labs downsized
 - Most now seen as corporate profit centers
 - Short-term focus with reduced investment
 - Off-shore, global shift in R&D funding
- Government labs focused on DoD
 - Government and defense applications

- University research critical to future success
 - More important than ever for basic R&D
 - Key to future U.S. technology development

University Research Key to the Future

University – Industry Collaboration Goals

- Enable fundamental research
 - Cost-effective tool to achieve innovation
 - IP issues must be resolved up front
- Improve duplex communication
 - Collaboration strengthens ties
 - Enhance technology insertion perspective
- Strengthen university-industry relations
 - Next generation of engineering leadership
 - Professors provide ideal external expertise

Potential for Future Recovery

Technology s-curve provides creative opportunity

 Massive investment in new technology required <u>now</u>

Engineering Education Requirements

- Continued focus on core skill sets
 Math and physics remain the critical foundation
- Expanded systems-engineering exposure

 Integrated approach to engineering solutions
 Management of global engineering resources
- Communication and teamwork skills
 A much-discussed and key requirement
- Freedom for creativity
 - At odds with the corporate culture but a critical need!

Conclusion

- Education collaboration required for success
 - Global environment is rapidly changing
 - U.S. government investment support is critical
 - Industry:university:government collaboration required
- Engineering education and university research
 - Focus on basic and emerging engineering needs
 - University research is new technology's forcing function
- Engineering education is the key component

 Enables innovation which in turn drives U.S. economy