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Abstract

A new technique proposed by B.S. Chen [1] for IIR filter design based on SVD of the Hankel

matrix, balanced realization and all-pass functions is simulated. Here IIR filter is obtained via an

Optimal Hankel-norm Approximation. The error between the optimal filter with order r and the

desired filter is found to be equal to the (r + 1) th singular value of the Hankel matrix.

The designed low-pass filter is given to illustrate the proposed design algorithm[1]. The LPF is

tested using seismic data obtained from seismic sensors.
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1 Introduction

A wide variety of methods for IIR filter design, such as the Pade approximation, the Chebyshev approx-

imation, Recursive filter design etc suffer from problems like:

• No linear phase in the pass band of the filter.

• The resulting design is not always stable.

• The resulting filter is minimally sensitive to parameter variations and round off noise.

Hence a new filter design was proposed by B.S. Chen based on the SVD of the Hankel matrix formed

from the modified impulse response of the desired filter. Here the state components, which are weekly

coupled to both input and output are discarded to reduce the model.

The major objective of this proposed design is to minimize the error between the order reduced filter

and the desired one in the Hankel-norm sense

2 Digital Filters

In the filter design process we find the coefficients that closely approximate the desired frequency response

specifications i.e., we derive the transfer function H(z)

IIR filters have the following advantages over the FIR filter:

• FIR filters have high order though they are always Stable and have Linear Phase.

• Computational Complexity in implementing FIR.

• IIR filter design requires less memory because it involves fewer parameters and requires less power

consumption.

3 Model Order Reduction (MOR)

You have an internally complex dynamical system and you want to reduce its complexity, preserving

input-output behavior. In addition MOR greatly reduces simulation time.

MOR ensures good approximation of the original system by the reduced system in various aspects

like stability, frequency responses etc.
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Design of both stable and linear phase IIR filters is very difficult without MOR.

Ex: Balanced Model Order Reduction (BMR), Optimal Hankel-norm Approximation (OHA) etc.

4 Optimal Hankel-norm Approximation (OHA)

The Hankel-norm of H(z) is defined as:

‖H‖H = σ (Φ (H)) (1)

Where H(z) is a stable transfer function and σ denotes the largest singular value of Φ (H), the Hankel

matrix.

We need to find a filter H1 (Z) with order r such that

minH1(Z)

∥∥H (Z) − H1 (z)
∥∥ (2)

To solve this problem it is necessary to find a balanced realization (A, B, C) of H(z) with corresponding

∑
= diag (σ1, σ2, ..., σr, σr+2, ..., σm, σr+1) (3)

Where
∑

is the diagonal matrix consisting of the nonzero singular values of Φ (H) with the ordering

σ1 ≥ σ2 ≥ ... ≥ σr ≥ σr+1 ≥ σr+2 ≥ ... ≥ σm > 0 (4)

If the filter is in a balanced state-space realization The SVD of Φ (H) will be

Φ (H) = U
∑

V T = ΩoΩc (5)

Where Ωo = U
√∑

and Ωc =
√∑

V T denote the observability and the controllability matrices

respectively so that

ΩT
o Ωo = ΩcΩT

c (6)

i.e., when the IIR filter is realised in a balanced state-space form, the observability grammian is equal

to the controllability grammian.
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The IIR filter using OHA is given by

H1
o (Z) = Ĉ

(
zI − Â

)−1

B̂ (7)
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5 Simulation Results
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Figure 1: The window shifted-truncated impulse response of FIR with order = 57
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Figure 2: The singular values of the Hankel Matrix of FIR with order = 57
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Figure 3: The overall frequency responses of IIR with order = 20 and FIR with order = 57
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Figure 4: The passband frequency responses of IIR with order = 20 and FIR with order = 57
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Figure 5: Pole-zero plot of IIR with order = 20
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Figure 6: The window shifted-truncated impulse response of FIR with order = 21
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Figure 7: The singular values of the Hankel Matrix of FIR with order = 21
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Figure 8: The overall frequency responses of IIR with order = 8 and FIR with order = 21
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Figure 9: Pole-zero plot of IIR with order = 8
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Figure 10: trace 1 before filtering in time domain
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Figure 11: few samples of trace 1 before filtering in time domain
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Figure 12: trace 1 before filtering in frequency domain
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Figure 13: trace 1 after FIR filtering with order = 57 in time domain
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Figure 14: trace 1 after IIR filtering with order = 20 in time domain
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Figure 15: trace 1 after FIR filtering with order = 57 in frequency domain
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Figure 16: trace 1 after IIR filtering with order = 20 in frequency domain
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Figure 17: error signal in FIR filter with order = 57 in frequency domain
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Figure 18: error signal in IIR filter with order = 20 in frequency domain
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Figure 19: trace 1 after FIR filtering with order = 21 in time domain

0 0.1 0.2 0.3 0.4 0.5
−5000

−4000

−3000

−2000

−1000

0

1000

2000

3000

time, samples

am
pl

itu
de

Figure 20: trace 1 after IIR filtering with order = 8 in time domain
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Figure 21: trace 1 after FIR filtering with order = 21 in frequency domain
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Figure 22: trace 1 after IIR filtering with order = 8 in frequency domain
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Figure 23: error signal in FIR filter with order = 21 in frequency domain
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Figure 24: error signal in IIR filter with order = 8 in frequency domain
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6 Conclusion

The advantages of IIR filter design using Optimal Hankel-norm Approximation are summarized as follows:

• The IIR filter is optimal in the Hankel-norm sense.

• Possible to predict the error between the IIR filter’s response and FIR one, which is σr+1

Where r is the filter order

• The performance of the IIR filter closely approximates that of FIR filter.

• The resulting design is always stable i.e., there is no need to modify the unstable poles of the filter.

The IIR LPF was tested by passing a trace obtained from a seismic sensor through it. The cut-off

frequency of the filter was chosen as 60 Hz and the sampling frequency was chosen as 500 Hz.

The error in the Hankel-norm sense is found to be σ20 = 0.0095 for order 20(IIR) and σ8 = 0.0593

for order 8(IIR) respectively. From this we conclude that decrease in the filter order increases the error

and vice versa.
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