State-Variable Description

Motivation

Consider a system with the transfer function

$$
H_{F}(s)=\frac{1}{s-1}
$$

Clearly the system is unstable

To stabilize it, we can precede $\mathrm{H}_{\mathrm{F}}(\mathrm{s})$ with a compensator

$$
H_{c}(s)=\frac{s-1}{s+1}
$$

The overall transfer function:

$$
H_{f}(s) H_{c}=\frac{1}{s-1} \quad \frac{s-1}{s+1}=\frac{1}{s+1}
$$

This is nice outcome, but unfortunately this technique will not work: After a while the system will burn or saturate.

To see why, let us first set up an analog computer simulation of the cascade system

We can write the equations

$$
\begin{aligned}
{\left[\begin{array}{c}
\bullet \\
x_{1} \\
x_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
-1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
-2 \\
1
\end{array}\right] v \\
y & =\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

There are general methods of solving such so-called state-space equation but it will suffice to proceed as follows:

The first equation is

$$
x_{1}=-x_{1}-2 v \quad, \quad x_{1}(0)=x_{10}
$$

Which yields

$$
x_{1}(\mathrm{t})=\mathrm{e}^{-\mathrm{t}} x_{10}-2 \mathrm{e}^{-\mathrm{t}} * v
$$

*denotes convolution

The second equation

$$
x_{2}=x_{1}+x_{2}+v
$$

has a solution

$$
y(\mathrm{t})=x_{2}(\mathrm{t})=\mathrm{e}^{\mathrm{t}} x_{20}+\left(\mathrm{e}^{\mathrm{t}}-\mathrm{e}^{-\mathrm{t}}\right) x_{10}+\mathrm{e}^{-\mathrm{t}} * v
$$

$$
\Rightarrow y(s)=x_{2}(s)=\frac{x_{20}}{s-1}+\frac{x_{10}}{(s-1)(s+1)}+\frac{v(s)}{s+1}
$$

Therefore the overall transfer function, which has to be calculated with zero initial condition is $1 /(\mathrm{s}+1)$ as expected.

Note: However, that unless the initial conditions can always be kept zero, y (.) will grow without bond.

So the input output description of a system is applicable only when the system is initially relaxed

State-Variable

Definition: The state of a system at time t_{0} is the amount of information at t_{o} that, together with $\mathrm{u}_{[\mathrm{to}, \infty}$, determine uniquely the behavior of the system for all $t \geq t_{o}$

Usually x denotes state, u input, y output

Example

$$
\begin{aligned}
y(t) & =\frac{1}{C} \int_{-\infty}^{t} u(\tau) d \tau=\frac{1}{C} \int_{-\infty}^{t o} u(\tau) d \tau+\frac{1}{C} \int_{t o}^{t} u(\tau) d \tau \\
& =y\left(t_{o}\right)+\frac{1}{C} \int_{t o}^{t} u(\tau) d \tau
\end{aligned}
$$

where

$$
y\left(t_{o}\right)=\frac{1}{C} \int_{-\infty}^{t o} u(\tau) d \tau
$$

So if $y\left(t_{0}\right)$ is known, the output after $t \geq$ to can be uniquely determined.
Hence, $y\left(t_{0}\right)$ regarded on the state at time t_{0}

Linearity

Definition: A system is said to be linear if for every t_{o} and any two state-input-output pairs

$\left.\begin{array}{l}\alpha_{1} x_{1}\left(t_{o}\right)+\alpha_{2} x_{2}\left(t_{o}\right) \\ \alpha_{1} u_{1}(t)+\alpha_{2} u_{2}(t) \quad \mathrm{t} \geq \mathrm{t}_{\mathrm{o}}\end{array}\right\} \rightarrow \alpha_{1} y_{1}(t)+\alpha_{2} y_{2}(t), \quad \mathrm{t} \geq \mathrm{t}_{\mathrm{o}}$
for any real constants α_{1} and α_{2}. Otherwise the system is said to be nonlinear.

- Linearity must hold not only at the output but also at all state variables and must hold for zero initial state and nonzero initial state.
- This definition is different from

$$
\mathrm{H}\left(\alpha_{1} \mathrm{u}_{1}+\alpha_{2} \mathrm{u}_{2}\right)=\alpha_{1} \mathrm{H}\left(\mathrm{u}_{1}\right)+\alpha_{2} \mathrm{H}\left(\mathrm{u}_{2}\right)
$$

Example

C and L are nonlinear

Because $\mathrm{L}-\mathrm{C}$ loop is in series connection with the current source, its behavior will not transmit to the output. Hence the above circuit is linear according the input-output definition while it is nonlinear according to the above definition of linearity.

A very important property of any linear system is that the responses of the system can be decomposed into two parts

Output due to $\left\{\begin{array}{l}x\left(t_{o}\right) \\ u(t), \quad \mathrm{t} \geq \mathrm{t}_{0}\end{array}\right.$

$$
=\text { output due to } \quad\left\{\begin{array}{l}
x\left(t_{o}\right) \\
u(t) \equiv 0, \quad \mathrm{t} \geq \mathrm{t}_{o}
\end{array}\right.
$$

$$
+ \text { output due to }\left\{\begin{array}{l}
x\left(t_{o}\right)=0 \\
u(t), \quad \mathrm{t} \geq \mathrm{t}_{o}
\end{array}\right.
$$

Or

Response $=$ zero-input response + zero-state response

A very broad class of systems can be modeled by

$$
\left.\begin{array}{rl}
\stackrel{\bullet}{x_{1}} & =f_{1}\left(x_{1}, \ldots, x_{n} u_{1}, \ldots, u_{p}, t\right) \\
& \cdot \\
& \cdot \\
& \cdot \\
\dot{x}_{n} & =f_{n}\left(x_{1}, \ldots, x_{n} u_{1}, \ldots, u_{p}, t\right)
\end{array}\right] \Rightarrow \underset{-}{\underset{-}{x}=\underset{-}{f}(\underset{-}{f}, u, t)}
$$

$$
\left.\begin{array}{rl}
y_{1} & =g_{1}\left(x_{1}, \ldots, x_{n} u_{1}, \ldots, u_{p}, t\right) \\
& \cdot \\
& \cdot \\
& \cdot \\
y_{q} & =g_{q}\left(x_{1}, \ldots, x_{n} u_{1}, \ldots, u_{p}, t\right)
\end{array}\right] \Rightarrow \begin{aligned}
& \underset{-}{g} \underset{-}{g(x, u, t)}
\end{aligned}
$$

where

$$
\underset{-}{X}:\left[\begin{array}{c}
x_{1} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right], \underset{-}{\boldsymbol{u}}=\left[\begin{array}{c}
u_{1} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
u_{p}
\end{array}\right], \text { and } \underset{-}{y}=\left[\begin{array}{c}
y_{1} \\
\cdot \\
\cdot \\
\cdot \\
y_{q}
\end{array}\right]
$$

For the special cases:

$$
\begin{aligned}
& x=A(t) x+B(t) u \\
& y=C(t) x+D(t) u
\end{aligned}
$$

