
State-Variable Description

Motivation
Consider a system with the transfer function
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Clearly the system is unstable

To stabilize it, we can precede HF(s) with a compensator
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The overall transfer function:
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This is nice outcome, but unfortunately this technique will not work: After a while the 
system will burn or saturate. 

To see why, let us first set up an analog computer simulation of the cascade system
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There are general methods of solving such so-called state-space 
equation but it will suffice to proceed as follows:



The first equation is 
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Which yields 

x1(t) = e-t x10 – 2e-t *v

*denotes convolution 

The second equation
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has a solution

y(t) = x2(t) = et x20 +     (et-e-t) x10 + e-t *v
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Therefore the overall transfer function, which has to be calculated with zero 
initial condition is 1/(s+1) as expected.

Note: However, that unless the initial conditions can always be kept zero, 
y(.) will grow without bond.

So the input output description of a system is applicable only when the system 
is initially relaxed



State-Variable

Definition: The state of a system at time to is the amount of 

information at to that, together with u[to,    ), determine ∞

uniquely the behavior of the system for all t    to
≥

Usually x denotes state, u input, y output



Example
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So if y(to) is known, the output after t ≥ to can be uniquely determined.

Hence, y(to) regarded on the state at time to



Linearity

Definition: A system is said to be linear if for every to and any 
two state-input-output pairs 
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for any real constants α1 and α2. Otherwise the system is said to be 
nonlinear.



• Linearity must hold not only at the output but also at all state
variables and must hold for zero initial state and nonzero initial state.

• This definition is different from 
H(α1u1 + α2u2) = α1 H(u1)+ α2 H(u2) 

Example

C and L are nonlinear

Because L – C loop is in series connection with the current source, its behavior 
will not transmit to the output. Hence the above circuit is linear according the 
input-output definition while it is nonlinear according to the above definition 
of linearity. 



A very important property of any linear system is that the responses of the 
system can be decomposed into two parts
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Or
Response = zero-input response + zero-state response  



A very broad class of systems can be modeled by 

),,(

),,...,,...,(

.

.

.

),,...,,...,(

11

1111

tuxfx

tuuxxfx

tuuxxfx

pnnn

pn

−−−

•

−

•

•

=⇒

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

=

=

together with 



),,(

),,...,,...,(
.
.
.

),,...,,...,(

11

1111

tuxgy

tuuxxgy

tuuxxgy

pnqq

pn

−−−−
=⇒

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

=

=

where

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−

y

y

u

ux qp

x

n

yandux

111

.

.

.
,

.

.

.
,

.

.

.
:



For the special cases:
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