
Time Invariance

A system is said to be time-invariant if a time shift in the input signal causes a corresponding time
shift in the output signal

To make the concept more precise, for fixed α R, we introduced the shift operator ∈
Qαu(t) = u(t – α)
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Definition: A system that is represented by the input output mapping 
y=H(u) is said to be time-invariant if and only if

H Qα(u) = Qα(H(u)) = Qα(y) α R and       u
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Definition:

A system which is not time-invariant is said to be time-varying

Example:

A system’s Input/Output (I/O) mapping is given by

This system is time-varying.  In fact
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Given a linear system modeled by H.  Then 

Question:

If H is also assumed to be time-invariant (in addition to linearity), what structure will time-
invariance impose on 
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Answer:

By time invariance, 

Equivalently, 

As a result, for any given         letting 

We have 
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Summarizing

For a linear time invariant system

where   
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If the system is, in addition causal and is relaxed at t = to, then
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Linear Time-Invariant Systems in the Frequency Domain

The output of a Linear Time-Invariant System (LTI) which is relaxed at      is 
given by
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Taking the Laplace transform of both sides, we have:
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SISO Case:

)(ˆ)(~̂)(ˆ susgsy =

is the system transfer function.  It has two interpretations:)(~̂ sg

1. is the Laplace transform of the system’s impulse response.
2. where y is the output corresponding to the input u when 

the system is relaxed at 
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MIMO Case:
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is the transfer function matrix.  It is the Laplace transform of the impulse 
response matrix.
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Definition: A rational function g(s) is said to be proper if g( ) is finite 
(zero or nonzero) constant. 

∞It is said to be strictly proper if g(    ) = 0.
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Remark

If g(s) =N(s)/D(s)

g(s) is proper if and only if deg N(s) < deg D(s)


