1. A linear time-invariant multivariable system with inputs $u_{1}(t)$ and $u_{2}(t)$ and outputs $y_{1}(t)$ and $y_{2}(t)$ is described by the following set of differential equations.

$$
\begin{aligned}
& \frac{d^{2} y_{1}(t)}{d t^{2}}+2 \frac{d y_{1}(t)}{d t}+3 y_{2}(t)=u_{1}(t)+u_{2}(t) \\
& \frac{d^{2} y_{2}(t)}{d t^{2}}+3 \frac{d y_{1}(t)}{d t}+y_{1}(t)-y_{2}(t)=u_{2}(t)+\frac{d u_{1}(t)}{d t}
\end{aligned}
$$

Find system transfer function:

$$
Y(s)=G(s) U(s)
$$

2. Given the differential equation,

$$
\frac{d^{3} y(t)}{d t^{3}}+5 \frac{d^{2} y(t)}{d t^{2}}+\frac{d y(t)}{d t}+2 y(t)=\frac{d u(t)}{d t}+2 u(t)
$$

find the state space representation for the system:
3. Do problem 2.18 of text. The part related to Fig. 2.25
4. Define sate variables such that the $\mathrm{n}^{\text {th }}$ order differential equation

$$
\begin{aligned}
y^{(n)}(t)+a_{n-1} t^{-1} y^{(n-1)}(t) & +a_{n-2} t^{-2} y^{(n-2)}(t)+ \\
& \ldots \ldots \ldots+a_{1} t^{-n+1} y^{(1)}(t)+a_{0} t^{-n} y(t)=0
\end{aligned}
$$

Can be written as a linear state equation

$$
x(\mathrm{t})=\mathrm{t}^{-1} \mathrm{Ax}(\mathrm{t})
$$

Where A is a constant $n \times n$ matrix.
5. What is the degree of the following transfer function? Find its minimal realization too.

$$
g(s)=\frac{s^{2}-1}{s^{3}+3 s^{2}+5 s+3}
$$

