
State-Variable Description 
 

Motivation 
 
Consider a system with the transfer function 
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Clearly the system is unstable  
 

To stabilize it, we can precede HF(s) with a compensator 
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The overall transfer function: 
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This is nice outcome, but unfortunately this technique will not work: 

After a while the system will burn or saturate.  
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To see why, let us first set up an analog computer simulation of the 

cascade system 

 
 
 
 
 
 
 
 
 

We can write the equations 
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There are general methods of solving such so-called state-space 

equation but it will suffice to proceed as follows: 

 

The first equation is  
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Which yields 
 

 x1(t) = e-t x10  2e-t *v 
 
*denotes convolution 



The second equation 
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has a solution 
 
 

 y(t) = x2(t) = et x20 + 
2

1  (e t-e-t) x10 + e-t *v 
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Therefore the overall transfer function, which has to be calculated with 

zero initial condition is 1/(s+1) as expected. 

 

 

Note: However, that unless the initial conditions can always be kept 

zero, y(.) will grow without bond. 

 

 

So the input output description of a system is applicable only when the 

system is initially relaxed 

 



State-Variable 
 

Definition: The state of a system at time to is the amount of 

information at to that, together with u[to,∞ ), determine 

uniquely the behavior of the system for all t ≥  to 

  

  Usually x denotes state, u input, y output 

 

Example 
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So if y(to) is known, the output after t ≥ to can be uniquely determined.  

Hence, y(to) regarded on the state at time to 



Linearity 
 
Definition: A system is said to be linear if for every to and any 

two state-input-output pairs 
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for i = 1, 2, we have 
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for any real constants 1 and 2. Otherwise the system is said 

to be nonlinear. 

 

• Linearity must hold not only at the output but also at all 

state variables and must hold for zero initial state and 

nonzero initial state. 

• This definition is different from  

 H(1u1 + 2u2) = 1 H(u1)+ 2 H(u2) 



Example 
 
 
 
 
 
 
 
 
 
 
 
C and L are nonlinear 
 

Because L  C loop is in series connection with the current source, its 
behavior will not transmit to the output. Hence the above circuit is 
linear according the input-output definition while it is nonlinear 
according to the above definition of linearity.  
 
§§  A very important property of any linear system is that the 

responses of the system can be decomposed into two parts 
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Or  

Response = zero-input response + zero-state response   



 
A very broad class of systems can be modeled by  
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together with 
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where 
 





















=



















=



















−−−

y

y

u

ux qp

x

n

yandux

111

.

.

.

,

.

.

.

,

.

.

.

:
 

We have seen an important special case, where 
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Fact (Existence & uniqueness) 
 
Under some mild conditions on f(., ., .), the value of x(.) at to qualifies 

e to, i.e. knowledge of x(to). And u(t) 

for t ≥ to gives a unique {y(t) : t ≥ to} & {x(t): t ≥ to} 

Which solves the equations:  
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For the special cases:  
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A sufficient condition for the existence of a unique solutions x(t), y(t) 

for t ≥ to given x(to) and u(t), t ≥ to is that A(.) be a continues function. 

We will make this assumption throughout the course. 

Note:  The above condition is always satisfied when 

A(.) is a constant matrix. 


