State-Variable Description

Motivation

Consider a system with the transfer function


[image: image35.wmf]
Clearly the system is unstable 

To stabilize it, we can precede HF(s) with a compensator
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The overall transfer function:
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This is nice outcome, but unfortunately this technique will not work: After a while the system will burn or saturate. 

To see why, let us first set up an analog computer simulation of the cascade system
We can write the equations
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There are general methods of solving such so-called state-space equation but it will suffice to proceed as follows:

The first equation is 
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Which yields


x1(t) = e-t x10 – 2e-t *v

*denotes convolution

The second equation


[image: image8.wmf]v

x

x

x

+

+

=

·

2

1

2




has a solution


y(t) = x2(t) = et x20 + 
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Therefore the overall transfer function, which has to be calculated with zero initial condition is 1/(s+1) as expected.

Note: However, that unless the initial conditions can always be kept zero, y(.) will grow without bond.

So the input output description of a system is applicable only when the system is initially relaxed

State-Variable

Definition: The state of a system at time to is the amount of information at to that, together with u[to,
[image: image11.wmf]¥

), determine uniquely the behavior of the system for all t 
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Usually x denotes state, u input, y output

Example
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where 
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So if y(to) is known, the output after t ( to can be uniquely determined.  Hence, y(to) regarded on the state at time to
Linearity

Definition: A system is said to be linear if for every to and any two state-input-output pairs
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for i = 1, 2, we have
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for any real constants α1 and α2. Otherwise the system is said to be nonlinear.

 Linearity must hold not only at the output but also at all state variables and must hold for zero initial state and nonzero initial state.

 This definition is different from 


H(α1u1 + α2u2) = α1 H(u1)+ α2 H(u2)

Example

C and L are nonlinear

Because L – C loop is in series connection with the current source, its behavior will not transmit to the output. Hence the above circuit is linear according the input-output definition while it is nonlinear according to the above definition of linearity. 

 A very important property of any linear system is that the responses of the system can be decomposed into two parts
Output due to  
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= output due to 
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+ output due to 
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Or 

Response = zero-input response + zero-state response  

A very broad class of systems can be modeled by 
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together with
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where
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We have seen an important special case, where
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and
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Fact (Existence & uniqueness)

Under some mild conditions on f(., ., .), the value of x(.) at to qualifies as the “state” of the system at time to, i.e. knowledge of x(to). And u(t) for t ( to gives a unique {y(t) : t ( to} & {x(t): t ( to}

Which solves the equations: 
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For the special cases:



A sufficient condition for the existence of a unique solutions x(t), y(t) for t ( to given x(to) and u(t), t ( to is that A(.) be a continues function.

We will make this assumption throughout the course.
Note:  The above condition is always satisfied when

A(.) is a constant matrix.
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