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Haykin Chapter 5
Signal Space Analysis

Dr. Samir Alghadhban

Objective

Geometric representation of signals with finite energy, which
provides a mathematically elegant and highly insightful tool
for the study of data transmission.

Maximum likelihood procedure for the detection of a signal in
AWGN channel.

Derivation of the correlation receiver that is equivalent to the
matched filter receiver discussed in the previous chapter.

Probability of symbol error and the union bound for its
approximate calculation.
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5.1 Introduction

Message | " si(1) x(1) n’= estimate of m;

Transmitter Channel Receiver

source

e A message source emits one symbol every T seconds, with the
symbols belonging to an alphabet of M symbols denoted by m; m,,
.., my,

* A priori probabilities p,, p,, . . ., p,, specify the message source
output probabilities.

¢ |f the M symbols of the alphabet are equally likely, we may express
the probability that symbol m, is emitted by the source as:

B = Plmy)

1
=Mfor:'='l,2.,...,M
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5.1 Introduction

Message
source

m;

5il1)

Transmitter Channel

x(1)

Receiver

n'= estimate of

m;

The transmitter takes the message source output m, and codes it into a
distinct signal s,(t) suitable for transmission over the channel.

The signal s,(t) occupies the full duration T allotted to symbol m.

Most important, s,(t) is a real-valued energy signal (i.e., a signal
with finite energy), as shown by:

.
Ei=[s/(t)dt, i=1 2, 0, M
0

5.1 Introduction

Message
source

m;

500)

Transmitter Channel

x(1)

Receiver

n'= estimate of

m;

The channel is assumed to have two characteristics:
1. The channelis linear, with a bandwidth that is wide enough to
accommodate the transmission of signal s;(t) with negligible or no
distortion.
2. The channel noise, w(t), is the sample function of a zero-mean white
Gaussian noise process.
We refer to such a channel as an additive white Gaussian noise (AWGN)
channel. Accordingly, we may express the received signal x(t) as  runsmies

D=t=T

."C“) = Sit” + “"{ﬂ} {I =1.2.....M

signal
50+

Received
signal
xlr)

White Gaussian nn(njse

i)
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5.1 Introduction

Message | " si(1) x(1) n’= estimate of m;

Transmitter Channel Receiver

source

The receiver has the task of observing the received signal x(t) for a
duration of T seconds and making a best estimate of the transmitted signal
s(t) or, equivalently, the symbol m;.

However, owing to the presence of channel noise, this decision-making
process is statistical in nature, with the result that the receiver will make
occasional errors.

The requirement is therefore to design the receiver so as to minimize the
average probability of symbol error, defined as:

M
Pe = D piP(m * milmi) , Where p; is the priori probability
i=1

P(rﬁ #* mi|mi) Is the conditional probability,

Detection Errors Example

7,
(a)
Signal with noise Signal
A, +n>0
/4 s (Detection error) /
’
4
=] S & /
~ W S -
| /7 ‘\ .
! I/
A, +n>0 ~
‘ P 3 A, +n>0
—A,+n<0 (Correct detection) (Correct detection)
(Correct detection) (b}
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5.2 Geometric Representation of Signals

The essence of geometric representation of signals is to represent any set of
M energy signals {s,(t)} as linear combinations of N orthonormal basis
functions, where N < M.

That is to say, given a set of real-valued energy signals s,(t), s,(t), ..., sp,(t),
each of duration T seconds, we write

N 0=¢=T
) = i ':’o -
si(t) %S-ﬂ"s” {;=1.2..,.,M

Where the coefficients of the expansion are defined by:

T f
’H=L s(B)(e) de, {x— L,2,....M

i=L%,..., N i
\IEB
The real-valued basis function are orthonormals--* .
T . U i f
1ifi=j ST Vza 0 Ve
thdi(t) ot = 5 =
meu ’ {”‘_#r_ -
—\Ea

5.2 Geometric Representation of Signals

¢ The set of coefficients may naturally be viewed as an N-dimensional
vector, denoted by s;. The important point to note here is that the
vector s, bears a one-to-one relationship with the transmitted signal

si(t):

. T ;=
] 0=r=T ’.__:J. s, (8)dit) dt. {1—1,2,“,,M
5‘“"%’*"’*“” {i——rl.l,.,.,.\-l MR P R

e G
f f

1,01} 14

T
Sip % —— &
) i) f
: T i 0

1ole) )

X o\ "
T 0

T Synthesizer o Correlator
i) I

fa) ()

10




5.2 Geometric Representation of Signals

¢ Signal Vector: We may state that each signal is completely determined
by the vector of its coefficients

SiN,

¢ Signal Space: The N-Dimensional Euclidean space is called the signal space

Example

N=2 T
M:3 1,41
e N

X

5.2 Geometric Representation of Signals

¢ Length: In an N-dimensional Euclidean space, it 'y
is customary to denote the length (also called E
the absolute value or norm) of a signal vector s,
by the symbol HSIH

e Squared-Length: The squared-length of any

signal vector s; is defined to be the inner
product or dot product of s, ,with itself, as
shown by:

e The inner product of the signals s,(t) and s,(t)
over the interval [0, T] is defined as:

.
L sitslt) dr = s]s,

12
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5.2 Geometric Representation of Signals

¢ Squared Euclidean Distance: ._

N
Is— sl = .3.‘1 fsy = su)”
=

= ). Glr) = sale)i ‘

* Angle 6, between two signal vectors s; and s,

P S;'-Sa. 1 N
Cos e = 7w 0. 0l
sl sl

* The two vectors s; and s, are orthogonal or
perpendicular to each other if their inner
product s;Ts, is zero, in which case 6, = 90
degrees.

8 A 5

5.2 Geometric Representation of Signals

There is an interesting relationship between the ._

energy content of a signal and its representation as 3
a vector. . I,

E =3 s < |Signal energyis equal to its

= 2 inner product or squared-length 1 -
= |l

Proof: . s —

E; = L sile) de

T N N
E = L |;§ sv"‘t’am][g Sud’i{f]:|dt . G

N v T
E =3, mmjn &(t)y ()t
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5.2 Example 1/3

¢ Find a set of orthonormal basis function for the following

ENE) a4(1)

1]

s4lr) i)
1

0.5

2

2
1 | - s ]|
—0.5 —0.5

1 2
2 - ‘ \ 1= . { ) r—
-1

Solution:
eyl ealt)
1 1 H
1 1= ‘ 1 2 1=+
5.2 Example 2/3
¢ Find the signal vector of the four signals
s,=(1,-0.5),s,=(-0.5,1),s,=(0,-1),s,=(0.5, 1)
* Represent these signals geometrically in the vector space
5 1= e e Sy 1T (‘ ¥4
1N /
4124‘ ll_i ’a*ll:J - - ’ { ’ - O) /
E ) /r\
@l ead) —(]I.i 'Fl\‘l
’_‘ ’_| (c) 0.5+ 5
‘ T P | 1 2
-] b 5y 16
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5.2 Example 3/3

* Find the energy of signals s,(t) and s,(t)
E, =[s/[ =12 +(-0.5)* =1.25
E, =|s,|f = (0.5)* +1? =1.25
* Find the Squared Euclidean Distance between s,(t) and s,(t)
d124 = Hsl - 54H2
=(1-05)" +(-0.5-1)
=0.25+225=25
* Find the angle between s,(t) and s,(t)
S's

cosd,, = S |544|| =0 [ 6,=90" Thus,s,(t) and s,(t) are orthogonal

17

Gram-Schmidt Orthogonalization
Procedure

Gram-Schmidt orthogonalization procedure provides a complete

orthonormal set of basis functions.

* Suppose we have a set of M energy signals denoted by s,(t), s,(t), .
s Splt).

» Starting with s,(t) chosen from this set arbitrarily, the first basis
function is defined by:

Al

$ilt) = U

*  Where E, is the energy of the signal s,(t). Then, clearly, we have

5(t) = V{E_i"ﬂ"l{r]
= st}

18

1/30/2014



Gram-Schmidt Orthogonalization
Procedure

Next, using the signal s,(t), we define the coefficient s,, as

T

534 = .Jn si(t)drqle)de ‘ The projection of s,(t) into the basis @, (t)

We may thus introduce a new intermediate function

galt) = s3{t) = s5:4b4(2) | Subtract the contribution of the first basis

from s,(t)

Note that g,(t) is orthogonal to @,(t)
Now, we are ready to define the second basis function as:

dalf) = - _ st} = saaebalt}
T = _—
o gwar ~ VB

Gram-Schmidt Orthogonalization
Procedure

Continuing in this fashion, we may in general define
—1

gt = slt) = ¥ st

i=1

T
Where o = [ swme@d, j= 12001

The basis function are

L] . .
"t"“}E___rJf . i=1,2,...,N
| Fe)dt
‘\‘l o £

The dimension N is less than or equal to the number of
given signals, M, depending on whether the signals are
linearly independent or not.

20
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Gram-Schmidt Orthogonalization
Procedure: Example

1 51(1) 1 i2(t)
+ lnﬁ +
)
1 12 14 112
S3(f) o 94(#)
+1.. ﬁ L
Lo 2 ap 1 2]

21

Example: Step 1

Ey= flsi()dr =2

. f1)= s1(r) _ s1(r)

N

1)

22
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Example: Step 2

2= | Alt)sa(t)dr=0

—o2

£ (t)=s2() - e12fi(t) = s2(r)

Ey= ?ISz(I)Izdz=2 i fAD
fz(f)=%&)=%{;) yvz 12l
2 4

Example: Step 3

3= | filt)s3(0de=0

—_—

€23 = sz (t)s3(£)dt = —2
13 (1) =s53() - q3f1(1) —cp3/(1)
=s3() +~2£2(1) =0

e No new basis function

24
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Example: Step 4

cra = JA(r)ss (e =~/

= | H(sale)dr =0
4 (1) =s4(t) =4 (1) =24 £ (1)
=s4(t)+~2f1(t)=0

e No new basis function. Procedure Complete

25

Signal Constellation Diagram

ING) B!
V2 X
s4(1) 51(2)
iz vz A
s2(1)
—JE::3

26
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5.3 Conversion of the Continuous AWGN
Channel into a Vector Channel

e Suppose that the input to the bank of N product
integrators or correlators is the received signal

: o= [
x(t) defined as:
0=t=T fiin
xlt) = st} + wit), LzLLHWM —~ [
U8 euma e, )'; a*
¢ where w(t) is a sample function of a white i
Gaussian noise process W(t) of zero mean and
power spectral density Ny/2. L.~ I
¢ the output of correlator j is the sample value of )
a random variable X W

.
%= L x{t)ditidt
i=1,2,...,N

T T
where s, = L sit)gsltldr  and  w; = L wit),{r)dt

=Sy T Wy

2 | Ooservation

vector
x

Random Variable

5.3 Conversion of the Continuous AWGN
Channel into a Vector Channel

* Each correlator output X; is a Gaussian random
variable with mean Sj and variance N,/2. (see the

— x J‘; ' it
proof in section 5.3 in textbook)

1 1 i=1,2....N
Pl |m) = e P [ N, “'“’1]’ i=1,2,...,M o (O [
* Also the correlator output X; are mutually i
uncorrelated and therefore they are statistically
independent. Lo
¢ Thus, the joint conditional pdf of the
observation vector X of length N is: i

) . 1o . )
Falx|m) = (mNp)~™2 cxp[——N > - si,-J‘j|, i=1,2...,M
=

2 | Observation

vector
x

1/30/2014
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5.4 Likelihood Functions

¢ At the receiver, we are given the observation vector x and
the requirement is to estimate the message symbol m; that is
responsible for generating x.
* We introduce the likelihood function, denoted by L(m,)
Lim;) = fylx|m), i=111..., M

* |n practice, we find it more convenient to work with the log-
likelihood function, denoted by I(m,)

Ilm) =log Limj, i=12....M
* For the observation vector x over AWGN channels, the log-
likelihood functions are:

&
Homg) = "_Nl'g #-21 g, — 5| i=1L2%4...,M
v

| Squared Euclidean Distance

29

5.5 Coherent Detection of Signals in Noise

Signal Detection Problem:

Given the observation vector x, perform a mapping from x to an
estimate M of the transmitted symbol, m,, in a way that would
minimize the probability of error in the decision-making process.

f2 fa

Noise

Noise cloud
S Received  vector

signal point -~ W
Observation Vi
vector Message
X point

Signal vector
SJ

f f
0 ! 0 !
iy fa

1/30/2014

15



5.5 Maximum a posteriori probability rule

Probability of error
¢ Suppose that, given the observation vector x, we make the decision
.The prolﬁal&ilm{ of error in this decision, which we denote by
P.(m;|x), is simply
P_(m;|x) = P(m, not sent |x)
=1 — P(m; sent |x)
Optimum decision rule
The maximum a posteriori probability (MAP) rule is:

Set 11 = my if
Pim, sent| x} = P{n, sent!x) forall k # i

Using Bayes’ rule, the MAP rule becomes:
Set #r = m; if
Pifxix|ms)
fxix}

is maximum for & = § 31

5.5 MAP rule

e The MAP rule is:
Set i = my; if
Pefactx| L)
Fxlx}

is maximum for & = §
¢ Where
— whete p, is the a priori probability of transmitting symbol m,

— f[x1'm,)is the conditional probability density function of the random
observation vectot X given the transmission of symbol m,

— and f,(x) is the unconditional probability density function of X.
* Note that
— The denominator term f,(x) is independent of the transmitted symbol.
— The a priori probability p, = p; when all the source symbols are
transmitted with equal probability.
— The conditional probability density function f,(x| m,) bears a one-to-
one relationship to the log-likelihood function I(m,). 32

1/30/2014
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5.5 Maximum likelihood (ML)

equivalent to the Maximum likelihood (ML) rule suc

Set #1 = m; if
i) is maximum for k = ¢

rule

e Thus, for equally probable symbols, the MAP rule becomes

h as:

Where /(m,) is the log-likelihood function

r?
%
Decision
~, bound:
r— g 1o \\ JE W /,/ cundary
> Y signal point W by o
Oh:g:rhm Message Reghn N /// Region
® point 23 e B Es
Signal vector Message b / Message
& point 3 \\K/ point 1 ;
1 - - 4
-+E /,/ \\\ VE
Vd Y
//I \\\\
i) /// " S
v -VE Ppoint 4 \\\ Decision
Region boundary
2
t
Let Z denote the N-dimensional space of all e
. . Decision
possible obsetvation vectors x. < VE sz DY v
. . ~, 4
We refer to this space as the observation o b v
space. % N ,/ i
Message b p Message
Because we have assumed that the decision _““2';‘/,( PO A
A~ . i £ 3
rule must say m=m, wherei=1,2,.., M, the i l & v
e
total observation space Z is correspondingly 7 &
7 by
partitioned into M-decision regions, denoted /, e Mo \\\ o
by Zl’ ZZI" .« ZM . Region boundary
. . . 4
Accordingly, we may restate the ML decision S

rule of as follows:
Observation vector x lies in region Z; if
I(m,) is maximum for k = i

1/30/2014
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5.5 MLD rule for AWGN channels

Recall that for AWGN channels,
.1 N
W) = "ﬁo MEI (%, — )% i=1,2,.,.., M

Note that /(m,) attains its maximum value when the summation term is
minimized.

Therefore, the MLD rule for AWGN channels is to minimize the squared-
Euclidian distance

Observation vector x lies in region Z, if
"

'Ei {x; — s,)* is minimum for k& = i
£

N
Where X (x - s, = | x — 5. *

f=1

Observation vector x lics in region Z, if
the Euclidean distance | x — s, || is minimum for & = i

For equally likely signals, the maximum likelihood decision rule is simply to choose the
message point closest to the received signal point 35

5.5 MLD rule for AWGN channels

The squared Euclidean distance could be expanded as:

N N N N
Sl = xP =23 xsy + 2 Sk
=1 =1 i=1 =

— The first summation term of this expansion is independent of the index k and
may therefore be ignored.

— The second summation term is the inner product of the observation vector x
and signal vector s,.

— The third summation term is the energy of the transmitted signal s,(t)
Therefore, the MLD rule becomes
Observation vector x lies i region Z, if

N

1
2 XS~ 5 E, is maximum for k& = §
h

36

1/30/2014
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5.6 Correlation Receiver

Inmer-proguct calculator

Demodulator

| 1
—, T | = |58
— %} f dr 6l —= x } Accumutator T —
e o [ -
Lo _"_ __________ i T
1l
1in By 36y
—, T - a5y —,
A L% } f at % | Coeervation x T x. Accumutaton > __Z_ e
—_— s o vecior — o
x
1
Lin 52 R
T,
— T Pt WEY
e % f ov Ty | % Accumutator ¥, —=
R o . . + /

f

Tyl sw £y

e,

L]

Salect

argest » Estimata

i

37
* Suppose also that symbol m; is transmitted, ;
an error occurs whenever the received ‘ =
. . . . . z! %
signal point does not fall inside region Z; % - Yo
» Averaging over all possible transmitted \\ pmEs
2 7
symbols, we readily see that the average e b .l Ragion
oy . b - 1
probability of symbol error, P, is Macracn \\\4(/ Masssge ‘
M -+E /// B, vE :
P, = 3 p; Px does not lie in Z;|»1; sent) b N
‘II M /// \\\
. - .
= T J-E| Pix does not lie in Z,|m; sent) // E :;‘meﬁafe \\ _—
M A . 2 bounc;ary
=1- ﬁ " Pix lies in Z,| m, sent) ﬂe-f:w
=i
1 M
P‘. =1-— J i, dl
M 2} 2 Fxlx| )
38
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5.7 Invariance of the Probability of Error to
Rotation and Translation

¢ Changes in the orientation of the signal constellation with respect to
both the coordinate axes and origin of the signal space do not affect the
probability of symbol error P,

¢ This result is a consequence of two facts

— Inmaximum likelihood detection, the probability of symbol error P, depends solely
on the relative Euclidean distances between the message points in the

constellation.

— The additive white Gaussian noise is spherically symmetric in all directions in the

signal space.

T

a

I
-]
-———|-——-9

o

|
o

———————

12
Vea .
- ‘. f
—Vza 0 Vza |
~+zal

5.7 Invariance of the Probability of Error to
Rotation and Translation

¢ Suppose all the message points in a signal constellation are translated by a

constant vector amount a

Sitranaluie — 5

* The observation vector Is correspondingly translated by the same vector

amount Kenalae = X — 8

i=1,2,..., M

® Then, " Keransdore — Frransdare | = ” X — 8 "

If a signal constellation is
translated by a constant vector
amount, then the probability of
symbol error P, incurred in
maximum likelihood signal
detection over an AWGN channel
is completely unchanged.

for all ¢

a

.
|
|
|
I
|
|
|

F———

(]
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5.7 Minimum Energy Signals

Given a signal constellation {Si }?jl, the corresponding signal
constellation with minimum average energy is obtained by
subtracting from each signal vector s, in the given constellation
an amount equal to the constant vector E[s],

M
Where E[s]: s,
i=1

Thus the minimum translate vectoris a_. = E[s]
and the minimum energy of the translated signal constellation is

=%- |a'.'r|-'m-||1

{g.-mmlal:r.ruin

5.7 Minimum Energy Signals

Proof:
The average energy of this signal constellation translated by vector amount a
is:

M
%rr:\nslﬂm = Z || 5 — d ” :'pi
[T}

The squared Euclidean distance between s; and a is expanded as:

Isi—al?= |s]*—2a"+ |al*
Therefore

M
’ |Z:I P‘.

M M
%:umlm.e = 21 | 5 " "P-' -2 % 3T5:Pa + ” a
=% — 2a"F[s] + ||a]*

Where g[g = Z s

f

Differentiating the above Equation with respect to the vector a and then
setting the result equal to zero, the minimizing translate is: a;, = E[S]

and the minimum energy is =%~ | amn|* 0

{gmmla:r.min

1/30/2014
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Example

Assuming equally likely signals, Find the Average energy of the
following signal constellations

A

-3a/2 -a2 O al2 3a/2 o a 2a
() ]
For (a) _lﬂzmam 790 (1]
G i et
5
:—az
4
For (b) 1
E,=—|a"+4a°+9
b 4(a o a)
:Eaz
4

3a

Pairwise Error Probability

For AWGN channels and equally likely signals, the pairwise error
probability of two signals s; and s, depends on the Euclidean
distance between the two signals:

Pr{s s } en‘cf|| H#
i k

Al —S||T

T S I

Where Q(.) is the Gaussian Q function.
Q(x) = oo exp[ ] y
j = ,// \"‘!fr(ﬂ::
/X

Q(x) = %erfcﬁ%g //_L .

0

S; S3

44
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The Q-function in Matlab

function out=g(x)

%Q Function (Gaussian Q-function)

% Area under the tail of a Gaussian pdf with
% mean zero and variance 1 from x to inf.

S

% ©See also: ERF, ERFC, QINV

out=0.5*erfc (x/sqrt(2)) ;|

45
Pairwise Error Probability: Example FSK
* The signal constellation for
binary FSKis: The Euclidean distance between
9: the two signals is:
\’E \‘/\‘\
E\y d,, =|ls,—s,||=2E
P I A E0 1  O[E
0 JE # Pr{s —>sj}:Qk N—0[|:Een‘cL 2N0E|
E is the average signal Energy
46

1/30/2014
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Pairwise Error Probability: Example Binary PSK

* The signal constellation for
binary PSK is:

The Euclidean distance between
the two signals is:

|4— WE —PE ||S1 — 52” — 2\/E
= ~—

.
O
s—>s |:—erfc |

JE 0 JE

E is the average signal Energy

47

Error Probability for Binary FSK and PSK

107}

Probability of Error

107 . .
-5 0 5 10
E/N, in dB
Signal to noise ration (SNR)

48
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Decision Regions

¢  Minimum distance detection rule:

The average symbol energy E;

&, is defined as:
S, s,
e e i
2Nz - PREY
A, A, 2 Z‘Si
¢ : E — 4=
A X ¢, M
_\/E _\/E A Ay £ [E Where M is the signal set size.
27 \2 - J;*\/;
] L4
S, S,

49

Union Bound

* Assume that the signal set size is M, for equally
probable transmission, the probability of error is:
A

M
PeSjD_ZPr{E|si}

# .

5

e For example, QPSK:

Ay

P sPr{sl—>sz}+Pr{sl—>sg}+Pr{sl—>s4}

50
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Union Bound: QPSK example

e The Euclidean Distances are:

S, dy, M
E [£|® \/E £,
E _JE B e ,

Yy
& L/* R

A

e The symbol error rate for QPSK is:

P <2Q \/7|+Q 2N |+ erfc \/7|

| = erfc

51

Tight Union Bound: QPSK example

* To get a tighter union bound, reduce overlap between
decision regions. 2

PRI
0 —d - 2( %J:\/E ’A: e A;‘ ‘d
B S 1 14 p
Ay
e The symbol error rate for QPSK is: .

P < Pr{sl—>sz}+Pr{sl—>s4}

Ul U LIE L
F’eSZQL f—s|=erfCL / = |
No 2N, [

52
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QPSK Symbol error probability and union bound

10°
— 4 union bound
__7'“"::413\\
\‘_
H‘H‘\
107 / \\\\
symbol error
probability

10—1 L

Probability of Error

E/N, mdB

Union Bound: Circularly Symmetric

The probability of symbol error, averaged over all the M symbols, is overbounded
as follows:

Pr=§plpr{mﬂ.:'
]M M ( dr' )
_'2212?"“ 2V,

For circularly symmetric constellations about the origin, such as QSPK

Pflﬁcrf-( dis ]f 1l i
z—z Lzm Or all f

1/30/2014
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Union Bound: Rectangular Constellations

For rectangular constellations, such as 16QAM, the error rate will be dominated
by the minimum distance.

d, ., = min dy for all i and &
Ewi . - 02 - -
1011 1001 1110 111
Thus erfc(i) = erl.:( Ao ) for all i and &
W/ T \2VN, . )
1010 1000 1100 101
And the average probability of symbol error will be: ” o 2 . .
0001 0000 o100 o110
{M 1] Idmin _
Pe = 2 HIC(EWU) oo.n m‘:a} : m‘m Ol.ll

I

. . dmin L _dém__ fa)
Since erfc is bounded by erfc(zvm) \Gexp( 4Nn)

Then M- (B
Fe=07 2P\,
55

Bit versus symbol error probability

Case 1: Gray Code

In the first case, we assume that it is possible to perform the mapping from binary to
M-ary symbols in such a way that the two binary M-tuples corresponding to any pair
of adjacent symbols in the M-ary modulation scheme differ in only one bit position.

Moreover, given a symbol error, the most probable number of bit errors is one.
subject to the aforementioned mapping constraint. Since there are log,M bits per
symbol it follows that the average probability of symbol 4

error is related to the bit error rate as follows: Sosnday
I?r?-an N?l\
Togz M Message Messags
P, = P( IJ fith bitis in errnr}) pint m; 2 g paintm,
i=1 A L Decision
I AT boundary
= > Plith bit is in error}
S |
= log; M - (BER)

Reghon ogic
z, Z,
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Bit versus symbol error probability

Case 1: Gray Code
We also note that

F. = P{cth hit is in error}) = BER

It follows therefore that the bit error rate is
bounded as follows:

F.
log,M

=PBER =P,

P,.=P(

loggM
IJ [ith bitis in errnr})

-

e AT
= 2 Plith bit is in error}
i=1
= log; M - (BER)
= Decision
beundary
I'h‘?-an Ihzwm

Decision

boundary

Bit versus symbol error probability

Case 2

Let M = 2K, where K is an integer. We assume that all symbol errors are equally likely

and occur with probability

P, _ P
M-1 2¢-1

What is the probability that the ith bit in a symbol is in error?
there are 2¢! cases of symbol error in which this particular |

are 21 cases in which it is not changed.
Hence, the bit error rate is

281 =hwz p
2F -1 \WM=-1/

BER=(

Note that for large M, the bit error rate approaches
the limiting value of P./2

where P, is the average probability of symbol error
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