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4.1 Introduction

In this chapter we study the transmission of digital data
(of whatever origin) over a baseband channel.

Baseband transmission of digital data requires the use of a
low-pass channel with a bandwidth large enough to
accommodate the essential frequency content of the data
stream.

Typically, however, the channel is dispersive in that its
frequency response deviates from that of an ideal low-pass
filter.

4.1 Error Sources in Baseband
Transmission

Intersymbol Interference (ISI)

The result of data transmission over a dispersive channel is
that each received pulse is affected somewhat by adjacent
pulses, thereby giving rise to a common form of interference
called intersymbol interference (ISl).

Intersymbol interference is a major source of bit errors in the
reconstructed data stream at the receiver output.

To correct for it, control has to be exercised over the pulse
shape in the overall system.

Thus much of the material covered in this chapter is devoted
to pulse shaping in one form or another.
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4.1 Error Sources in Baseband
Transmission

* Another source of bit errors in a baseband data transmission
system is the channel noise.

* Naturally, noise and ISl arise in the system simultaneously.

4.2 Matched Filter

* A fundamental result in communication theory deals with the
detection of a pulse signal of known waveform that is
immersed in additive white noise.

* The device for the optimum detection of such a pulse involves
the use of a linear-time-invariant filter known as a matched
filter.

e |tit called a matched filter because its impulse response is
matched to the pulse signal.
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4.2 Matched Filter

The filter input x(t) consists of a pulse signal g(t) corrupted by additive
channel noise w(t), as shown by

x(t) =g(t) + w(t), 0<t<T,whereTisan arbitrary observation interval

The pulse signal g(t) may represent a binary symbol 1 or 0 in a digital
communication system.

The w(t) is the sample function of a white noise process of zero mean and
power spectral density Ny/2.

It is assumed that the receiver has knowledge of the waveform of the
pulse signal g(t). The source of uncertainty lies in the noise w(t).
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4.2 Matched Filter

The function of the receiver is to detect the pulse signal g(t) in an
optimum manner, given the received signal x(t).

To satisfy this requirement, we have to optimize the design of the filter so
as to minimize the effects of noise at the filter output in some statistical
sense, and thereby enhance the detection of the pulse signal g(t).

Since the filter is linear, the resulting output y(t) may be expressed as:
y(t) =g,(t) + n(t)

where g,(t) and n(t) are produced by the signal and noise components of
the input x(t), respectively.
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¢ Asimple way of describing the requirement that the output signal
component g,(t) be considerably greater than the output noise
component n(t) is to have the filter make the instantaneous power in the
output signal g,(t), measured at time t =T, as large as possible compared
with the average power of the output noise n(t).

¢ This is equivalent to maximizing the peak pulse signal-to-noise ratio,

defined as 2.lT1|2

T E)]
* where |g,(T) |?is the instantaneous power in the output signal, £ is the
statistical expectation operator, and E[n?(t)] is a measure of the average
output noise power.

¢ The requirement is to specify the impulse response h(t) of the filter such
that the output signal-to-noise ratio is maximized.

Linear time-
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4.2 Matched Filter f

White noise
wir)
Let G(f) denote the Fourier transform of the known signal g(t),
and H(f) denote the frequency response of the filter. Then the
Fourier transform of the output signal g,(t) is equal to H(f)G(f),
and g.(t) is itself given by the inverse Fourier transform:

gt} = f HIfIG(f) explj2mft) df

Hence, when the filter output is sampled at time t = T, the signal
power will be:

.

8Tl = | [ HAG) explizarT) dr

10

1/30/2014



Signal
&l

4.2 Matched Filter

X

®

White noise
wir)

Linear time-
invariant filter of
impulse response

hie)

vin v(T})

Sample at
timer =T

¢ Consider next the effect on the filter output due to the noise

w(t) acting alone.

* The power spectral density S,(f) of the output noise n(t) is
equal to the power spectral density of the input noise w(t)
times the squared magnitude response |H(f) |2

* Since w(t) is white with constant power spectral density N,/2,

it follows that: N
Sulf) = T" |Hif) 2

* The average power of the output noise n(t) is therefore

e = [ supdf

Ny [*
=7”f_, | df

11
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* Thus, the peak pulse signal-to-noise ratio is:

|
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* For a given G(f), what is the frequency response H(f) of the

filter that maximizes n ?

* To find the solution to this optimization problem, we apply a
mathematical result known as Schwarz's inequality to the

numerator of the above Equation.

12

1/30/2014



Schwarz's inequality

If we have two complex functions @,(x) and @,(x) in the real

variable x, satisfying the conditions:

jjﬂ|¢1[x]1dx{m AND Juqﬁz{xhlzdx{w

Then

2 - "

< [ ldatnl 2 dr [ 1o d

U__ b1(x)6lx) d
The equality in (4.9) holds if, and only if, we have

By ix) = ke 3lx)

13
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e Therefore, applying Schwarz's inequality for ¢ ,(x) = H{f) and ¢z} = G{f) expl fmfT),

] o ™
II- HUFIGUf) expli2mfT) df{ EJ‘_le{ﬂI‘a’f I_EIGU}Ildf

¢ Thus, the peak pulse signal-to-noise ratio is:

n= }i I:n Gif)|* df

il

¢ The right-hand side of this relation does not depend on the frequency
response H(f) of the filter but only on the signal energy and the noise

power spectral density.

¢ Consequently, the peak pulse signal-to-noise ratio n will be a maximum

when H(f) is chosen so that the equality holds; that is,

Honlf) = RG*(f} exp(=i27{T|

14
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In the time domain, the impulse response of the optimum filter is:

=

boplt] = k |__ G*(f} exp[~2af(T — t)] df

Recall that for real signals g(t), the real part of the spectrum is even and the
imaginary part is odd. Thus G*(f)=G(-f) .

F=)

hoeit) = k | Gi—f) expl=j2af(T — tll df

=& [ Gif exp li2mf (T - 1 df

= kgiT - 1)
The impulse response of the optimum filter, except for the scaling factor k, is
a time-reversed and delayed version of the input signal g(t). So, it is matched
to the input signal.

15
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¢ Thus, the peak pulse signal-to-noise ratio will be:
20 Ginizd
Mo = o | G

e According to Rayleigh's energy theorem, the integral of the squared
magnitude spectrum of a pulse signal with respect to frequency is equal to
the signal energy E . .

E= f _gindt = L |GUY* df

2€
N

0o

e Therefore 7y =

e Thus, the peak pulse signal-to-noise ratio of a matched filter depends only
on the ratio of the signal energy to the power spectral density of the white

noise at the filter input
16
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Example: Find the matched filter output g (t)

for the following signal:
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Energy = A2T
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|
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17
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For the special case of a rectangular pulse, the matched filter may be
implemented using a circuit known as the integrate-and-dump circuit

gt

Energy = A<T

Rectangular
pulse

Dutpul

]

———== Integrator

o o

Sample at

timer=T
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b) Plot the matched filter output as a function of time.

s_(t)
-]

c¢) What is the peak value of the output? R

Peak value = A2T/4

[ S,

2
E ' i
i i
[} U
Az'[‘/B - —==
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4.3 Error Rate Due to Noise

e Consider a binary PCM system based on polar non-return-to-zero
(NRZ) signaling.

¢ In this form of signaling, symbols 1 and 0 are represented by
positive and negative rectangular pulses of equal amplitude and
equal duration.

¢ The channel noise is modeled as additive white Gaussian noise w(t)
of zero mean and power spectral density N,/2.

* Inthe signaling interval 0 <t < T, the received signal is thus written

as follows:
+A + twft),  symbol 1 was sent
x[t) =

=A + wit), symbol O was sent

* where T, is the bit duration, and A is the transmitted pulse
amplitude.

21

4.3 Error Rate Due to Noise

The structure of the receiver used to perform this decision-making process is:

. N —= Say 1ify =2
PCM wave Matched _‘_o\\c - Decision
s(r) filter device
. Sample at +—== Say 0 if v <A
timer =7, T
White Gaussian Threshold
naise wit) A

There are two possible kinds of error to be considered:

— Symbol 1 is chosen when a 0 was actually transmitted; we refer to this
error as an error of the first kind.

— Symbol 0 is chosen when a 1 was actually transmitted; we refer to this
error as an error of the second kind.

22
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4.3 Error Rate Due to Noise

* To determine the average probability of error, we consider
these two situations separately.

¢ Suppose that symbol 0 was sent. Then
x(t) =-A+w(t), 0<t<T,
* The matched filter output, sampled at timet=T,, is:

¥y = jo ’ xit) dt

1"
—A o h‘[’ wit) dt

* which represents the sample value of a random variable Y

23

4.3 Error Rate Due to Noise

¢ Since the noise w(t) is white and Gaussian, we may characterize the
random variable Y as follows:
— The random variable Y is Gaussian distributed with a mean of —A.
— The variance of the random variable Y is
ab = E[[Y + A}
1 M ~Tw .
= T E Jr“ _Ju o theu) ot ﬂ'u-|
T[T .
= ﬁ L JI'j Elrrtharn)] dt du

1 Ta 7 Th

=53], |, Relt,u) de du
h L1

* where R, (t, u) is the autocorrelation function of the white noise w(t).
* Since w(t) is white with a power spectral density Ny/2, we have

Rylt, w) = No &t — u)  Where §(t-p) is a time-shifted delta function

24
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4.3 Error Rate Due to Noise

¢ Therefore, the variance of Y is:

. 1 ™ JF"'“ Ny
1 = + -
oy =h 2 8t — w) dr du

T,

¢ The conditional probability density function of the random variable
Y, given that symbol 0 was sent, is:

. 1 If {y + -’l}zj
Wiy |0) = -
Fely [0} Vo, Ty exp\ NofTy J

fyly 0) fyly 1)

Mo Por

25

4.3 Error Rate Due to Noise

* Letp,,denote the conditional probability of error,
given that symbol 0 was sent.

P = Ply = A|symbol 0 was sent)
= [ oty 0y dy

1 f ( » 4 AF)
Iy P S WA T

Y

26
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Complementary Error Function

e complementary error function is defined as:

erfcit) = % [ expl—z7) dz

¢ which is closely related to the Gaussian distribution.

¢ For large positive values of u, we have the following upper bound on
the complementary error function:

erfc(u) < M
Vo

¢ Relation to Q-Function: W
i Q-Functi Qtv]=lzl-'lf'ﬁ(ﬁ)

erfoiu) = 200V 2u)

A

= L 2
L:".v]—ﬁjh EXP{ zjd’

27

f TanLE A6.6  The error funclion’

Error Function

u © erfiu) " erfiu)
0.00 0.00000 1.10 0.88021
0.05 0.05637 1.15 0.89612
0.10 0.11246 1.20 0.91031
0.15 0.16800 1.25 0.32220
0.20 0.22270 1.30 0.93401
0.25 0.27633 1.35 0.94376
2 - 0.30 0.32863 1.40 0.95229
erfely) = — [ expl—27} dz 0.35 0.37938 1.45 0.95970
Vi d 0.40 0.42839 1.50 0.96611
0.45 0.47548 1.55 0.97162
0.50 0.52050 1.60 0.97635
0.55 0.56332 1.65 0.98038
0.60 0.60386 1.70 0.98379
0.65 0.64203 1.75 0.98667
0.70 0.67780 1.80 0.98909
0.75 0.71116 1.85 0.992111
0.80 0.,74210 1.90 0.99279
0.85 0.77067 1.95 0.99418
0.90 0.79691 2.00 (0.99532
0.95 0.82089 2,50 0.99359
100 0.84270 3.00 0.99998
1.05 0.86244 3.30 0.999998

“The error function is rabulated extensively in several
references; see for example, Abramowitz and Stegun
(19635, pp. 237-316). 28
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4.3 Error Rate Due to Noise

‘ ) - Piy = Alsymbol 0 u'asI;Imt?
 Define a new variable z as: Puo = Plr= sy

= j’ Frly|0) dy
A - 3
L_yt4 =7J’ﬁp(_{yl.4]‘)d}_
v Ny/Ts VENIT, \, MalTy

e Thus

1
ne \._"T\r 1A+ ARG

1 A+A
=g ek (VNQ;T.-,)

r exp(—z') dz

 Similarly, conditional probability of error, given that symbol 1

was sent is. -
Por = ﬁj;i—k:rvm

: l:ali'c( A A j
2 VNIT,

exp{—2*) dz

4.3 Error Rate Due to Noise ~

* Let p,and p, denote the a priori probabilities of transmitting
symbols 0 and 1, respectively.

* Hence, the average probability of symbol error P, in the receiver is
given by:
Py, = popha + iras

=.?,2Der[c|/A+’l)‘P'crfc(A_ﬁ)

WNGIT.! 2 VNI,

e What is the optimal value of the threshold A that minimizes the
error probability P, ?
* We need to derive P, and equate it to zero.

* For this optimization we use Leibniz's rule

30
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Leibniz’s Rule 2 [~
erfcln) = Ve L expl—z7) dz

e Consider the integral = um
Jj:l Flz, u) dz

e Leibniz's rule states that the derivative of this integral with respect to u is

d o dbiw) dlalw) "5
= L u) de = Fiblu), _ Ll ifiz, u)
o ey 1120 ¥ 2 = [lblat), 30) =3 = flata), ) =2 4 LM T d

¢ For the problem at hand, we note from the definition of the

complementary error function that: ¢, ,, - % exp(~z2)
T
alu} = u
blu) = =
¢ The application of Leibniz's rule to the complementary error function thus
yields
E erfelu) = —# exp( ~56%)

31

4.3 Error Rate Due to Noise

* Hence, differentiating P, with respect to A by making use of the
Leibniz’s rule, then setting the result equal to zero and simplifying
terms, we obtain the optimum threshold as:

Nl.l (]
Aoy = —— log[ =
"~ 44T, “5( )

¢ For the special case when symbols 1 and 0 are equiprobable, we have

1
PI=PU=E

* Andthatleadsto A,,=0

32
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4.3 Error Rate Due to Noise

* This result is intuitively satisfying as it states that, for the
transmission of equiprobable binary symbols, we should
choose the threshold at the midpoint between the pulse
heights —A and +A representing the two symbols 0 and 1.

* Note that for this special case we also have p,, = p;q

* Achannel for which the conditional probabilities of error p,,
and p,, are equal is said to be binary symmetric.

4.3 Error Rate Due to Noise

¢ Correspondingly, for equiprobable binary polar NRZ PCM, the
average probability of symbol error

1 A )
P, = 3 erfc (\—"_N.. T

* Since transmitted signal energy per bit is defined as E,=A?T,

¢ Accordingly, we may finally formulate the average probability of
symbol error to be:

' [E,)
P = lerfc[ '—J’]

¢ which shows that the average probability of symbol error in a binary
symmetric channel depends solely on E, / N,, the ratio of the
transmitted signal energy per bit to the noise spectral density.
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4.3 Error Rate Due to Noise

. — Say 1ifv =3
P e — N |
+ Sample at > SayOify <d
timer =T,
T 1 [E,
White Gaussian Threshold P, = Eerfc( 'F)
noise wit) i V Ny
e Using the upper bound on the complementary 107
error function, we may correspondingly bound
the average probability of symbol error for the 104 -
PCM receiver
EJCPf_E.uI"Nu] ; 10-6 - |
AV B
2
e The PCM receiver therefore exhibits an % 108 -
exponential improvement in the average §
probability of symbol error with increase in 10101 |
Ey/No
10 12 1

4.3 Error Rate: Example

Q) A binary PCM system using polar NRZ signaling operates just above the
error threshold with an average probability of error equal to 10-5. Suppose
that the signaling rate is doubled. Find the new value of the average
probability of error. You may use Table A6.6 to evaluate the complementary
error function.

A) For a binary PCM system, with NRZ signaling, the average probability of

error is
O C
Pe=lerfc E
2N, |

The signal energy per bit is E,=A?T, , where A is the pulse amplitude and T, is
the bit duration.

If the signaling rate is doubled, the bit duration T, is reduced by half.
=> E, is reduced by half

1/30/2014
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4.3 Error Rate: Example (cont)
* Letu= \/E:Z, then for P,=10"° = %erfc(u) , we get u=3.3

* Now when the signaling rate is doubled, the new value of P is:

1 u
P :—erfCE—
e 2 \/E«H

= %erfc(2.33) =10"°
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