ORBITAL TO GEOCENTRIC EQUATORIAL COORDINATE SYSTEM TRANSFORMATION

$\left[\begin{array}{l}x_{i} \\ y_{i} \\ z_{i}\end{array}\right]=\left[\begin{array}{llc}(\cos \Omega \cos \omega- & (-\cos \Omega \sin \omega- & \sin \Omega \sin i \\ \sin \Omega \cos i \sin \omega) & \sin \Omega \operatorname{cosi} \cos \omega) & \\ (\sin \Omega \cos \omega+ & (-\sin \Omega \sin \omega+ & -\cos \Omega \sin i \\ \cos \Omega \operatorname{cosi\operatorname {sin}\omega)} & \cos \Omega \operatorname{cosi} \cos \omega) & \\ \sin i \sin \omega & \sin i \cos \omega & \cos i\end{array}\right]\left[\begin{array}{c}x_{0} \\ y_{o} \\ z_{o}\end{array}\right]$

GEOCENTRIC EQUTORIAL TO ROTATING COORDINATE SYSTEM TRANSFORMATION

- The equatorial plane coincides with the plane of the paper.
- The earth rotates anti-clockwise with angular velocity Ω_{e}.
- x_{r} and y_{r} axes are attached to the earth and rotate with it.
- Z_{i} and z_{r} axes coincide.

$$
\left[\begin{array}{c}
x_{r} \\
y_{r} \\
z_{r}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \left(\Omega_{e} T_{e}\right) & \sin \left(\Omega_{e} T_{e}\right) & 0 \\
-\sin \left(\Omega_{e} T_{e}\right) & \cos \left(\Omega_{e} T_{e}\right) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{i} \\
y_{i} \\
z_{i}
\end{array}\right] .
$$

$\boldsymbol{T}_{\boldsymbol{e}}$ is the time elapsed since the x_{r} axis coincided with the x_{i} axis.
The value of $\Omega_{e} T_{e}$ at any time t , expressed in minutes after midnight UT is given by: $\Omega_{e} T_{e}=\alpha_{g, 0}+0.25068447 t \quad$ degrees.

Where $\alpha_{g, 0}$ is the right ascension of the Greenwich meridian at 0 h UT at Julian day JD and is given by:
$\alpha_{g, 0}=99.690983+36000.7689 T_{c}+0.00038708 T_{c}^{2}$ degrees
where Tc is the elapsed time in Julian centuries between 0h UT on Julian day JD and noon UT on January 1, 1900.

$$
T_{C}=(J D-2415020) / 36525
$$

Add 0.5 to the JD value used in this equation before substituting in the previous equation (since it is calculated at Oh UT).

JULIAN DAYS AND JULIAN DATES

Standard time is Universal time UT
(mean solar time at Greenwich observatory near London).

- Astronomers use Julian days and Julian dates.
- Julian days start at noon.
- Julian date time reference is $\mathbf{1 2 0 0}$ noon UT on January 1, 4713 BC
- Examples:
* Noon on December 31, 1899 was the beginning of Julian day 2,415,020
Noon UT on December 31, 1984 was the start of Julian day 2,446,066
00:00:00 hours UT on January 1, 1985 was Julian date 2,446,066.5

JULIAN DATES AT THE BEGINNING OF EACH YEAR

FOR (1986-2000)

Year	Julian date	Year	Julian date
	$2400000+$	1993	48987.5
1986	46430.5	1994	49352.5
1987	46795.5	1995	49717.5
1988	47160.5	1996	50082.5
1989	47526.5	1997	50448.5
1990	47891.5	1998	50813.5
1991	48256.5	1999	51178.5
1992	48621.5	2000	51543.5

DAY NUMBER FOR NOON ON THE LAST DAY

OF EACH MONTH

Date	Day No.	Leap year	Date	Day No.	Leap year
Jan 31	31.5	31.5	July 31	212.5	213.5
Feb 28/29	59.5	60.5	Aug 31	243.5	244.5
March 31	90.5	91.5	Sept 30	273.5	274.5
Apr 30	120.5	121.5	Oct 31	304.5	305.5
May 31	151.5	152.5	Nov 30	334.5	335.5
June 30	181.5	182.5	Dec 31	365.5	366.5

Example of Julian date calculation:

1. Find the Julian date JD corresponding to 3 h UT on Oct 11,1986.

Oct 11 is day number $273.5+11=284.5$
Start of Oct 11 (Oh UT) is 284
At 03:00:00 UT is (3/24) $=0.125$ day
Day and time will be 284.125
Add this to the Julian date for Jan 1, 1986
We get: $2,400,000+46,430.5+284.125=2,446,714.625$
2. Find the Julian date JD corresponding to 15:00:00 h UT on March 10, 1999.

March 10 is day number $59.5+10=69.5$
At 15:00:00 UT is 0.125 day after noon
Day and time will be $69.5+0.125=69.625$
Add this to the Julian date for Jan 1, 1999
We get: $2,400,000+51,178.5+69.625=\quad 2,451,248.125$

LOOK ANGLE DETERMINATION

Definition: Look angles are the coordinates to which an earth station antenna must be pointed to communicate with the satellite.

Local vertical

East

Azimuth (Az) The angle measured eastward from geographic north to the projection of the satellite path on a locally horizontal plane at the earth station.

Elevation (EI) The angle measured upward from the horizontal plane to the satellite path.

THE SUBSATELLITE POINT

The point where a line drawn from the centre of the earth to the satellite passes through the earth's surface.
$L_{s} \rightarrow$ The north latitude of the subsatellite point.
$I_{s} \rightarrow$ The west longitude of the subsatellite point.

$L_{s}=90^{\circ}-\cos ^{-1}\left[\frac{z_{r}}{\sqrt{x_{r}^{2}+y_{r}^{2}+z_{r}^{2}}}\right]$
$l_{s}=\left\{\begin{array}{cccc}-\tan ^{-1}\left(\frac{y_{r}}{x_{r}}\right) & y_{r} \geq 0 & x_{r} \geq 0 & \text { first quadrant } \\ 180^{\circ}+\tan ^{-1}\left(\frac{y_{r}}{\left|x_{r}\right|}\right) & y_{r} \geq 0 & x_{r} \leq 0 & \text { second quadrant } \\ 90^{\circ}+\tan ^{-1}\left(\left.\frac{x_{r}}{y_{r}} \right\rvert\,\right. & y_{r} \leq 0 & x_{r} \leq 0 & \text { third quadrant } \\ \tan ^{-1}\left(\frac{\mid y_{r} r}{x_{r}}\right) & y_{r} \leq 0 & x_{r} \geq 0 & \text { fourthquadrant }\end{array}\right\}$

ELEVATION EVALUATION

$$
\cos (\gamma)=\cos \left(L_{e}\right) \cos \left(L_{s}\right) \cos \left(l_{s}-l_{e}\right)+\sin \left(L_{e}\right) \sin \left(L_{s}\right)
$$

$$
d=r_{s} \sqrt{\left[1+\left(\frac{r_{e}}{r_{s}}\right)^{2}-2\left(\frac{r_{e}}{r_{s}}\right) \cos (\gamma)\right]}
$$

$E l=\psi-90^{\circ}$

Using the law of sines:

$$
\frac{r_{s}}{\sin (\psi)}=\frac{d}{\sin (\gamma)}
$$

$$
\therefore \cos (E l)=\frac{r_{s} \sin (\gamma)}{d}=\frac{\sin (\gamma)}{\sqrt{1+\left(\frac{r_{e}}{r_{s}}\right)^{2}-2\left(\frac{r_{e}}{r_{s}}\right) \cos (\gamma)}}
$$

These equations permit the evaluation of the elevation angle from a knowledge of the subsatellite point and earth station coordinates.

AZIMUTH CALCULATION

The satellite, sub-satellite point and the earth station lie on the same vertical plane. Therefore the azimuth angle can be measured from the north direction going eastward towards the sub-satellite point.

The geometry used for the calculation depends on whether the sub-satellite point is east or west of the earth station and which hemisphere contains the sub-satellite point and the earth station.

This calculation is simplified for the ideal geostationary orbit.

Northern hemosphere, A west of B

Southern hemosphere, A west of B

Southern hemosphere, B west of A

- Either point A or point B can be the earth station; the other must be the sub-satellite point.
- B is closer to the pole that is nearer to both points.
\square Points A, B, and the pole form a spherical triangle with polar angle C and angles X and Y at the vertices A and B.

$$
C=\left|l_{A}{ }^{-l} B\right| \quad \text { or } \quad C=\left|360-\left|l_{A}{ }_{B} l_{B}\right|\right|
$$

Whichever makes $C \leq 180$ deg rees

Case 1: At least one point in the northern hemisphere.

$$
\rightarrow \quad L_{B}>L_{A} \text { is chosen to be closer to the north pole. }
$$

The bearings X and Y may be found from:

$$
\begin{aligned}
& \tan [0.5(Y-X)]=\frac{\cot (0.5 C) \sin \left[0.5\left(L_{B}-L_{A}\right)\right]}{\cos \left[0.5\left(L_{B}+L_{A}\right)\right]} \\
& \tan [0.5(Y+X)]=\frac{\cot (0.5 C) \cos \left[0.5\left(L_{B}-L_{A}\right)\right]}{\sin \left[0.5\left(L_{B}+L_{A}\right)\right]} \\
& X=0.5(Y+X)+0.5(Y-X) \\
& Y=0.5(Y+X)-0.5(Y-X)
\end{aligned}
$$

The relationship between X, Y, and the azimuth Az depends on the identity of points A and B and on
their geographical relationship. These are given in the following table.

Formulas for calculating the azimuth.

At least one point in the northern hemisphere			
Sub-satellite point	Earth Station	Relation	Azimuth
A	B	A west of B	$360-$ Y
B	A	A west of B	X
A	B	B west of A	Y
B	A	B west of A	$360-$ X

Both points in the southern hemisphere			
Sub-satellite point	Earth Station	Relation	Azimuth
A	B	A west of B	$180+$ Y
B	A	A west of B	$180-$ X
A	B	B west of A	$180-$ Y
B	A	B west of A	$180+$ X

CALCULATION OF LOOK ANGLES FOR GEO-STATIONARY SATELLITES

Sub-satellite point is at the equator. \rightarrow therefore $L_{s}=0$.

The geo-synchronous radius $r_{s}=42242 \mathrm{Km}$
The earth's radius re $=6370 \mathrm{Km}$
The central angle γ is given by:
$\cos (\gamma)=\cos \left(L_{e}\right) \cos \left(l_{s}-l_{e}\right)$

The distance d from the earth station to the satellite is given by:

$$
d=42242[1.02274-.301596 \cos (\gamma)]^{1 / 2} \quad \mathrm{Km}
$$

The elevation angle is then given by:

$$
\cos (E l)=\frac{\sin (\gamma)}{[1.02274-0.301596 \cos (\gamma)]^{1 / 2}}
$$

zimuth calculation is simpler than the general case, because the sub-satellite point lies on the equator. We refer to the following figure for this calculation.

$$
a=\left|l_{s}-l_{e}\right|
$$

$$
c=\left|L_{e}-L_{s}\right|
$$

Considering the half perimeter of the triangle $=s$

$$
\therefore s=0.5(a+c+\gamma)
$$

The angle a at the vertex may be obtained from:

$$
\tan ^{2}\left(\frac{\alpha}{2}\right)=\frac{\sin (s-\gamma) \sin (s-c)}{\sin (s) \sin (s-a)}
$$

$$
\text { and } \alpha=2 \tan ^{-1} \sqrt{\frac{\sin (s-\gamma) \sin \left(s-\left|L_{e}\right|\right.}{\sin (s) \sin \left(s-\left|l_{e}-l_{s}\right|\right.}}
$$

SSP south-west of ES

SSP north-west of ES

SSP south-east of ES

SSP north-east of ES

Equations for calculating azimuth from spherical triangle angle α SSP \rightarrow Sub-satellite point

ES \rightarrow Earth Station

Situation

1. SSP South-west of ES
2. SSP South-east of ES
3. SSP North-west of ES
4. SSP North-east of ES
