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SATELLITE PATH IN SPACE 
 

 
Assumptions: 
 
1. The satellite and earth are symmetric, spherical and 

therefore may be treated as point masses. 
2. No forces other than their gravitational forces act on the 

system. 
3. The mass of the earth is much greater than that of the 

satellite. 
 
Equation of motion may be formulated: 
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drr Orbital angular 

momentum. 

 

Orbital angular momentum can only be constant if the orbit lies 
in a plane. 

 

To simplify the analysis, we use the orbital plane co-ordinate 
system: 

 

 
 
 
 
 

 
 
Using the rectangular to polar transformation, we obtain the 

equation relating ro and φo 
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C and θο are constants. 
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Where  10 <≤e  for elliptical path. The path is circular if e=0. 
 

e is the eccentricity and is given by 
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THE ORBIT DESCRIPTION: 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Θo is taken = 0. So that xo coincides with the major axis. 
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SATELLITE PERIOD: 
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We may use this expression to calculate the radius of a geo-
synchronous circular orbit. 
 
If T = 86,400 Se.  a = 42,241.558 Km. 
 
 
A geo-synchronous orbit that lies in the earth’s equatorial plane 
(having zero inclination) is geo-stationary. 
 
For a satellite in a circular orbit around the earth, we have: 
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Where ER  is the earth’s radius & h is the satellite altitude. 
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LOCATING THE SATELLITE IN THE ORBIT 
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oφ  is measured from the ox  axis and is called the true anomaly. 
 
The rectangular co-ordinates  of the satellite are given by: 
 

ooo rx φcos=    and  ooo ry φsin=   
 
The satellite average angular velocity is given by: 
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µπη ==   The time required for the satellite moving 

with this angular velocity to go around any circle is T sec. 
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Solving for dt and multiplying by the mean angular velocity 
we get : 
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Angle E is called eccentric anomaly and is related to the 
radius ro by : 
 

Eaearo cos−=    Eaera o cos=−  
 

dEEedt )cos1( −=∴η  
 
If pt  is the time of perigee, then integrating the last 
equation, we get: 
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EeEtt p sin)( −=−η  
 

Mtt p ⇒− )(η        called  the mean anomaly. 
 

oφ   is the true anomaly. 
 
 

Provided that we know time of perigee (tp), the 
eccentricity(e), and semimajor axis(a), then we have all 
the equations to determine the coordinates of the satellite 
in the orbital plane: 
 

PROCEDURE: 
 
 

1. Calculate the average angular velocity from  
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2. Calculate the mean anomaly from   )( pttM −=η  
3. Find the eccentric anomaly from      EeEM sin−=  
4. Find ro from      Eaera o cos=−  

5. Find φο from      
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ooo rx φcos=    and  ooo ry φsin=   
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LOCATING THE SATELLITE WITH RESPECT TO THE 
EARTH 

 

 
iii zandyx ,,   Geocentric equatorial co-ordinate system. 

 
 

ooo zandyx ,,   Orbital plane  co-ordinate system. 
 
 

rrr zandyx ,,   Rotating  co-ordinate system. 
 
 
 

 
 

 
 
 
 
 

The geocentric equatorial 
system 
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Ω is the right ascension of the ascending node. 
 
ω is the argument of perigee in the orbital plane. 
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