EE 204 Lecture 14 Mesh Analysis with current sources

Mesh Analysis (with Current Sources):

When the circuit contains current sources, the above procedure is modified.

Example 4:

Calculate the mesh currents $i_1 \& i_2 \& i_3$

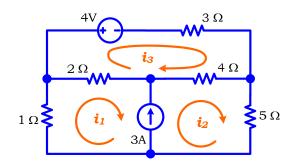


Figure 10

Solution:

KVL around mesh 1 \Rightarrow $1i_1 + 2(i_1 - i_3) + V_x = 0$ (problem!)

We *cannot directly* replace V_x by mesh currents, because Ohm's Law *does not* apply to current sources.

KVL around mesh 2 $\Rightarrow -V_x + 4(i_2 - i_3) + 5i_2 = 0$ (similar problem!)

Mesh 1 & 2 contain a current source (they share the 3A source)

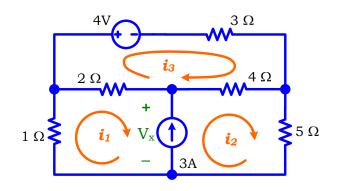


Figure 11

What to do in this case? \Rightarrow Combine mesh 1 & 2 \Rightarrow Super Mesh (SM)

To avoid
$$V_x \implies$$
 Apply KVL around SM
 $\downarrow \downarrow$
 $1i_1 + 2(i_1 - i_3) + 4(i_2 - i_3) + 5i_2 = 0$
 $\downarrow \downarrow$
 $3i_1 + 11i_2 - 6i_3 = 0$ (1)

We need one more equation!

Apply KCL
$$\Rightarrow$$
 $i_2 - i_1 = 3$ (2)

Mesh 3 *does not contain a current source* \Rightarrow no special treatment

KVL around mesh 3 \Rightarrow 4+3 i_3 + 4(i_3 - i_2) + 2(i_3 - i_1) = 0

 $-2i_1 - 4i_2 + 9i_3 = -4 \quad (3)$

∜

Solving (1) & (2) & (3) $\implies i_1 = -2.767A$ & $i_2 = 0.233A$ & $i_3 = -0.956A$

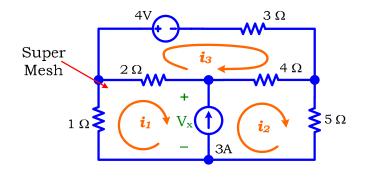
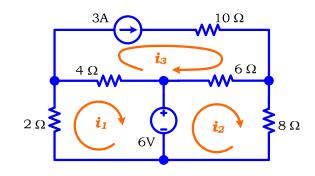


Figure 12

Current source shared by two meshes


1) Combine the two meshes into a SM

2) Apply KVL around the SM

3) Apply KCL

Example 5:

Calculate the mesh currents $i_1 \& i_2 \& i_3$

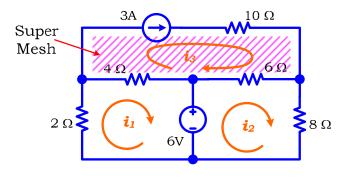
Solution:

Mesh 1 & 2 *do not* contain *current* sources \Rightarrow Just Apply KVL around mesh (1) & (2)

KVL around mesh 1 \Rightarrow $2i_1 + 4(i_1 - i_3) + 6 = 0 \Rightarrow 6i_1 - 4i_3 = -6$ (1) KVL around mesh 2 \Rightarrow $-6 + 6(i_2 - i_3) + 8i_2 = 0 \Rightarrow 14i_2 - 6i_3 = 6$ (2)

Mesh 3 contains 3A current source (not shared by another mesh)

₩


Do not apply KVL (because KVL involves voltage across the current source)

∜

Apply KCL Only

$$\downarrow i_3 = 3 \tag{3}$$

[Note: Since we need *just* one equation from mesh 3, KCL provides it in this case] Solving (1) & (2) & (3) $\Rightarrow i_1 = 1.000A \& i_2 = 1.714A \& i_3 = 3.000A$

Current source in one mesh only (not shared) \Rightarrow No KVL \Rightarrow Only KCL

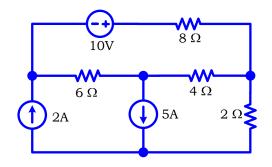
Nodal Vs Mesh Analysis

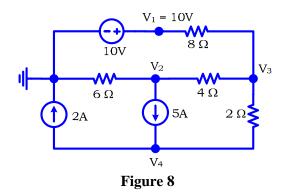
Which method is more efficient, the nodal or the mesh analysis?

The answer depends on the circuit under consideration. The method that results in the *least* number of *actual* unknowns is generally more efficient.

Example 4:

Calculate the power absorbed by the 4Ω resistor.




Figure 7

Using nodal analysis:

There are 5 essential nodes in the circuit.

Choose the reference node on one side of the 10V source.

:. Number of *actual* unknowns is 3 (only $v_2 \& v_3 \& v_4$ are unknown, since $v_1 = 10V$)

Using mesh analysis:

Number of actual unknowns is only 2 (only $i_2 \& i_3$ are unknown, since $i_1 = 2A$)

 \therefore Use the mesh analysis to solve this problem:

KCL \Rightarrow $i_1 - i_2 = 5$ \Rightarrow $2 - i_2 = 5$ \Rightarrow $i_2 = -3A$

KVL around mesh 3 \Rightarrow $-10+4(i_3-(-3))+6(i_3-2)=0 \Rightarrow i_3=1A$

: $p_{4\Omega} = 4(i_2 - i_3)^2 = 4(-3 - 1)^2 = 16W$

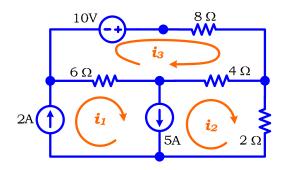


Figure 9