# EE 204 Lecture 13 Mesh Analysis - Introduction

#### **Definition of Mesh**

The circuit contains four windows (meshes).

A mesh is simply a window in an electric circuit



Figure 1

## **Currents through Elements & Mesh Currents:**

The currents  $i_a$  ,  $i_b$  ,  $i_c$  are currents through elements

KCL at node 1  $\Rightarrow$   $i_a = i_b + i_c \Rightarrow i_b = i_a - i_c$ 



Figure 2

The imaginary currents  $i_1 \& i_2$  are mesh currents

We imagine  $i_1$  to circulate around mesh 1 (CW)

We imagine  $i_2$  to circulate around mesh 2 (also CW)

- $i_a = i_1$  (because only mesh current  $i_1$  goes through  $2\Omega$  and 10V)
- $i_c = i_2$  (because only mesh current  $i_2$  goes through  $4\Omega$  and 5V)

 $i_b = i_a - i_b = i_1 - i_2$  (two mesh currents  $i_1 \& i_2$  go through  $6\Omega$  in opposite directions)



Figure 3

# Example 1:

Express the <u>c</u>urrents <u>t</u>hrough <u>e</u>lements (CTE)  $i_x$ ,  $i_y$ ,  $i_z$ ,  $i_w$  in terms of <u>m</u>esh <u>c</u>urrents (MC)  $i_1$  &  $i_2$ .

Solution:

 $i_x = i_1$ 

 $i_y = -i_3$ 

 $i_z = i_1 - i_2$ 

 $i_{w}=i_{3}-i_{1}$ 



Figure 4

## Number of MC $\leq$ Number of CTE

## **Mesh Analysis (without Current Sources):**

The Mesh Analysis procedure for circuits without current sources will be considered first.

We will learn the *basic* Mesh Analysis procedure through a simple example.

## Example 2:

Calculate the mesh currents  $i_1 \& i_2$ .



Figure 5

Solution:

Procedure:

1- KVL around mesh 1  $\Rightarrow$   $-10 + V_a + V_b = 0$ 

2- Ohm's Law  $\Rightarrow -10 + 2i_a + 6i_b = 0$ 

3- KCL  $\Rightarrow$   $-10+2i_1+6(i_1-i_2)=0$  [CTE are expressed in terms of MC]

4- Simplify  $\Rightarrow 8i_1 - 6i_2 = 10$  (1)

Repeat the same procedure for the remaining meshes:

1- KVL around mesh 2  $\Rightarrow$   $-V_b + V_c - 5 = 0$ 

2- Ohm's Law  $\Rightarrow -6i_b + 4i_c - 5 = 0$ 

3- KCL  $\Rightarrow$   $-6(i_1 - i_2) + 4i_2 - 5 = 0$  [CTE are expressed in terms of MC]

4- Simplify  $\Rightarrow -6i_1 + 10i_2 = 5$  (2)

Equations (1) & (2) contain only the *mesh unknowns*  $i_1$  &  $i_2$ .

Solving (1) & (2) 
$$\Rightarrow$$
  $i_1 = 2.955A$  &  $i_2 = 2.273A$ 



Figure 6

Mesh Analysis procedure:  $K\underline{V}L \Rightarrow \underline{O}hm$ 's Law  $\Rightarrow K\underline{C}L \equiv VOC$ 

Repeat the previous example by combining steps 1 & 2 & 3 into a single step:

 $\underline{C}$ urrents  $\underline{t}$ hrough  $\underline{r}$ esistors = CTR

Always imagine CTR to be in the same direction as KVL

Express the *imagined* CTR in terms of MC

Mesh 1: KVL & Ohm's Law & KCL  $\Rightarrow$  -10+2 $i_1$ +6 $(i_1$ - $i_2$ ) = 0  $\Rightarrow$  8 $i_1$ -6 $i_2$  = 10 (1)



Figure 7

Mesh 2: KVL & Ohm's Law & KCL  $\implies$   $6(i_2 - i_1) + 4i_2 - 5 = 0 \implies -6i_1 + 10i_2 = 5$  (2)



Figure 8

**Example 3:** Calculate the mesh currents  $i_1 \& i_2 \& i_3$ 

Solution:

Mesh 1: 
$$\Rightarrow 4i_1 - 8 + 6(i_1 - i_2) = 0$$
  $\Rightarrow 10i_1 - 6i_2 = 8$  (1)

Mesh 2: 
$$\Rightarrow 6(i_2 - i_1) + 8(i_2 - i_3) + 12 = 0 \Rightarrow -6i_1 + 14i_2 - 8i_3 = -12$$
 (2)

Mesh 3: 
$$\Rightarrow 2i_3 + 8(i_3 - i_2) + 8 = 0 \Rightarrow -8i_2 + 10i_3 = -8$$
 (3)

Solving (1) & (2) & (3)  $\Rightarrow$   $i_1 = -1.24$ A &  $i_2 = -3.40$ A &  $i_3 = -3.52$ A



Figure 9