EE 204
 Lecture 11
 Nodal Analysis - Introduction

Definition of Essential Nodes

The essential nodes of the circuit are labeled " 0 ", " 1 ", " 2 ", " 3 ", " 4 "
All points that are connected by a short circuit belong to the same essential node.
All points in the lower part of the circuit are connected by a short circuit, they all belong to node " 0 "
The same applies to nodes " 1 ", " 2 ", " 3 ", " 4 "
For this circuit $\Rightarrow 5$ essential nodes

Figure 1

Example 1:

Label the essential nodes starting from " 0 " onwards.

Figure 2
Solution:
a) 4 essential nodes.
b) 6 essential nodes.

We can label the essential nodes as we like.

Figure 3

The Reference Node
The node labeled " 0 " is called a reference node.

We will see later that the reference node always has zero Nodal Voltage.

Other possible labels for the reference node are shown in the figure

Figure 4

Nodal Voltages

We associate a voltage with every essential node. These voltages are called Nodal Voltages.
$V_{0}, V_{1}, V_{2}, V_{3} \quad \Leftrightarrow \quad$ Nodal Voltages of essential nodes $0,1,2,3$

The nodal voltage V_{i} is the voltage drop from node " i " to the reference node " 0 "
\Downarrow

$$
\begin{gathered}
V_{i} \equiv V_{i, 0} \\
\\
\Downarrow
\end{gathered}
$$

$V_{0} \equiv V_{0,0}$
$V_{1} \equiv V_{1,0}$
$V_{2} \equiv V_{2,0}$
$V_{3} \equiv V_{3,0}$

Reference node $\quad \Rightarrow \quad V_{0} \equiv V_{0,0}=0 \quad \Rightarrow \quad$ Reference node always has zero nodal voltage.

Figure 5

Relationship between Nodal Voltages and Voltages across Elements

Nodal voltages (NV) $\Rightarrow V_{1}, V_{2}, V_{3}$
The reference nodal voltage $V_{0}=0$ is not shown (it is always not shown)
Another label is used to mark the reference node in this case.
Voltages across elements (VAE) $\Rightarrow \quad V_{a}, V_{b}, V_{c}, V_{d}, V_{e}$

KVL
\Downarrow
$-V_{a}+V_{10}=0 \quad \Rightarrow \quad-V_{a}+V_{1}=0 \quad \Rightarrow \quad V_{a}=V_{1} \quad \Rightarrow \quad V_{a}=V_{1}-V_{0}$
$-V_{1}+V_{b}+V_{2}=0 \quad \Rightarrow \quad V_{b}=V_{1}-V_{2}$
$V_{c}=V_{2} \quad \Rightarrow \quad V_{c}=V_{2}-V_{0}$
$-V_{2}+V_{d}+V_{3}=0 \quad \Rightarrow \quad V_{d}=V_{2}-V_{3}$
$V_{e}=V_{3} \quad \Rightarrow \quad V_{e}=V_{3}-V_{0}$

Figure 6

$$
V_{x}=\text { voltage across element }
$$

$V_{i}=$ Nodal voltage on the $(+)$ side of V_{x}
$V_{j}=$ Nodal voltage on the (-) side of V_{x}
\Downarrow

$$
V_{x}=V_{i}-V_{j}
$$

Figure 7

Example 2:

Express the VAE $V_{a}, V_{b}, V_{c}, V_{d}, V_{e}$ in terms of the NV V_{1}, V_{2}, V_{3}.

Figure 8
Solution:

$$
\begin{aligned}
& V_{a}=V_{3}-V_{0}=V_{3}-0=V_{3} \\
& V_{b}=V_{3}-V_{2} \\
& V_{c}=V_{2}-0=V_{2} \\
& V_{d}=V_{2}-V_{1} \\
& V_{e}=0-V_{1}=-V_{1} \quad \text { (why?) } \\
& V_{f}=V_{1}-0=V_{1} \\
& V_{g}=V_{1}-V_{3}
\end{aligned}
$$

if we know all NV \Rightarrow we know all VAE

Nodal Analysis Procedure (without voltage sources)

If the circuit contains no voltage sources, the nodal analysis is very easy to apply.
The Nodal analysis procedure is best illustrated by an example.

Example 3:

Calculate the nodal voltages $V_{1} \& V_{2}$

Figure 9
Solution:
The procedure is started with KCL.
Current leaving a node we use (+) \& Current entering a node we use (-).

Step1: KCL at node $1 \quad \Rightarrow \quad i_{a}-3+i_{b}=0$

Step 2: Ohm's Law $\quad \Rightarrow \quad \frac{V_{a}}{2}-3+\frac{V_{b}}{6}=0$
Step 3: Replace $V A E$ with $N V \Rightarrow \quad \frac{V_{1}-0}{2}-3+\frac{V_{1}-V_{2}}{6}=0$
Step 4: Simplify $\Rightarrow \quad 3 V_{1}-18+V_{1}-V_{2}=0 \quad \Rightarrow \quad 4 V_{1}-V_{2}=18$

Repeat the same procedure for the remaining nodes:

KCL at node $2 \quad \Rightarrow \quad-i_{b}+i_{c}+1=0$
Ohm' Law $\quad \Rightarrow \quad-\frac{V_{b}}{6}+\frac{V_{c}}{8}+1=0$
Replace VAE with NV $\quad \Rightarrow \quad-\frac{V_{1}-V_{2}}{6}+\frac{V_{2}-0}{8}+1=0$
Simplify $-4 V_{1}+4 V_{2}+3 V_{2}+24=0 \Rightarrow-4 V_{1}+7 V_{2}=-24$
Solve the resulting equations simultaneously:
$(1)+(2) \Rightarrow 6 V_{2}=-6 \quad \Rightarrow \quad V_{2}=-1 V$
Substitute in (1) $\quad \Rightarrow \quad 4 V_{1}-(-1)=18 \quad \Rightarrow \quad V_{1}=\frac{17}{4} V$

Figure 10

Nodal analysis \Rightarrow step 1) K $\underline{C L} \Rightarrow$ step 2) \underline{O} hm's Law \Rightarrow step 3) K \underline{V}
Nodal analysis \Rightarrow COV

Example 3:

Derive the nodal equations (do not simplify and do not solve)

Figure 11
Solution:
This time, we will combine steps 2 \& 3 into a single step.
The voltages across resistances will not be shown explicitly.

Node 1:
KCL

$$
\Rightarrow \quad i_{a}+9+i_{b}=0
$$

Ohm's Law then KVL $\quad \Rightarrow \quad \frac{V_{1}-0}{4}+9+\frac{V_{1}-V_{2}}{3}=0 \quad \Rightarrow \quad$ eqn. (1)

Node 2:
KCL $\quad \Rightarrow \quad-i_{b}-7+i_{c}=0$
Ohm's Law then KVL $\quad \Rightarrow \quad-\frac{V_{1}-V_{2}}{3}-7+\frac{V_{2}-0}{2}=0 \quad \Rightarrow \quad$ eqn. (2)

Figure 12

Example 4:

Repeat the previous example by combining steps $1,2,3$ into a single step.

Figure 13
Solution:

This time we will not show currents through resistances or voltages across resistances.
Important: we will imagine currents through resistors to be leaving the node under consideration.

Node 1:
$\frac{V_{1}-0}{4}+9+\frac{V_{1}-V_{2}}{3}=0 \quad \Rightarrow \quad$ eqn. (1)
Node 2:
$\frac{V_{2}-V_{1}}{3}-7+\frac{V_{2}-0}{2}=0 \quad \Rightarrow \quad$ eqn. (2)
We obtained the same equations directly.

Example 5:

Write the nodal equations directly (do not simplify or solve)

Figure 14
Solution:
Again imagine currents through resistors to be leaving the node under consideration.
Node $1 \Rightarrow \frac{V_{1}}{8}-2+\frac{V_{1}-V_{3}}{5}=0$
Node $2 \Rightarrow 2+\frac{V_{2}}{4}+\frac{V_{2}-V_{3}}{11}=0$
Node $3 \quad \Rightarrow \quad \frac{V_{3}-V_{2}}{11}+\frac{V_{3}-V_{1}}{5}+\frac{V_{3}}{6}=0$
The last equation has no constant term, because no current sources are connected to node 3.

Example 6:

a) Calculate the nodal voltages V_{1}, V_{2} and V_{3}
b) Use the above results to calculate $i_{1} \& i_{2}$

Figure 15

Solution:

a)

We will ignore the currents $i_{2} \& i_{3}$ and again imagine currents through resistors to be leaving the node under consideration.

After all if i_{1} and i_{2} were not shown in the circuit, we should still obtain the same nodal voltages.
Node $1 \quad \Rightarrow \quad 3+4+\frac{V_{1}-V_{2}}{2}=0 \quad \Rightarrow \quad V_{1}-V_{2}=-14$
Node $2 \Rightarrow \quad \frac{V_{2}-V_{1}}{1}+\frac{V_{2}-0}{2}+\frac{V_{2}-V_{3}}{3}=0 \quad \Rightarrow \quad-6 V_{1}+11 V_{2}-2 V_{3}=0$
Node $3 \quad \Rightarrow \quad \frac{V_{3}-V_{2}}{3}-4-2=0 \quad \Rightarrow \quad-V_{2}+V_{3}=18$
Solving (1), (2), (3) simultaneously:
$V_{1}=-30 V \quad \& \quad V_{2}=-16 V \quad \& \quad V_{3}=2 V$
[After you solve the equations, you should always check that the results satisfy those equations]
b)
$i_{1}=\frac{V_{2}-V_{3}}{3}=\frac{-16-2}{3}=-6 \mathrm{~A}$
$i_{2}=\frac{0-V_{2}}{2}=\frac{0-(-16)}{2}=8 \mathrm{~A}$
From the examples done in this class it easy to conclude the following:

1) $N_{u}=N_{e s s}-1$
$N_{u}=$ Number of unknown nodal voltages
$N_{\text {ess }}=$ Number of essential nodes
2) $N_{u} \leq N_{e l e}$
$N_{\text {ele }}=$ Number of unknown voltages across elements
Thus the nodal analysis is efficient because the number of unknown voltages is reduced.
3) The procedure remains the same if no voltage sources are present in the circuit. We will deal with this case in the next class.
