Image Enhancement in the Frequency Domain Part I

Dr. Samir H. Abdul-J auwad
Electrical Engineering Department King Fahd University of Petroleum \& Minerals

Fundamentals

- Fourier: a periodic function can be represented by the sum of sines/cosines of different frequencies, multiplied by a different coefficient (Fourier series)
- Non-periodic functions can also be represented as the integral of sines/cosines multiplied by weighing function (Fourier transform)

Introduction to
 the Fourier Transform

- $f(x)$: continuous function of a real variable x
- Fourier transform of $\mathrm{f}(\mathrm{x})$:

$$
\begin{aligned}
\mathfrak{J}\{f(x)\}=F(u) & =\int_{-\infty}^{\infty} f(x) \exp [-j 2 \pi u x] d x \quad \text { Eq. } 1 \\
\text { where } \quad j & =\sqrt{-1}
\end{aligned}
$$

Introduction to the Fourier Transform

- (u) is the frequency variable.
- The integral of Eq. 1 shows that $F(u)$ is composed of an infinite sum of sine and cosine terms and. . .
- Each value of u determines the frequency of its corresponding sine-cosine pair.

Introduction to
 the Fourier Transform

- Given $F(u), f(x)$ can be obtained by the inverse Fourier transform

$$
\begin{aligned}
\mathfrak{J}^{-1}\{F(u)\} & =f(x) \\
& =\int_{-\infty}^{\infty} F(u) \exp [j 2 \pi u x] d u
\end{aligned}
$$

- The above two equations are the Fourier transform pair.

Introduction to
 the Fourier Transform

- Fourier transform pair for a function $f(x, y)$ of two variables:

$$
\begin{aligned}
& \mathfrak{J}\{f(x, y)\}=F(u, v)=\iint_{-\infty}^{\infty} f(x, y) \exp [-j 2 \pi(u x+v y)] d x d y \\
& \Im^{-1}\{F(u, v)\}=f(x, y)=\iint_{-\infty}^{\infty} F(u, v) \exp [j 2 \pi(u x+v y)] d u d v
\end{aligned}
$$

where u, v are the frequency variables.

Discrete Fourier Transform

- A continuous function $f(x)$ is discretized into a sequence:

$$
\left\{f\left(x_{0}\right), f\left(x_{0}+\Delta x\right), f\left(x_{0}+2 \Delta x\right), \ldots, f\left(x_{0}+[N-1] \Delta x\right)\right\}
$$

by taking N or M samples $\Delta \mathrm{x}$ units apart.

Discrete Fourier Transform

- Where x assumes the discrete values
($0,1,2,3, \ldots, \mathrm{M}-1$) then

$$
f(x)=f\left(x_{0}+x \Delta x\right)
$$

- The sequence $\{f(0), f(1), f(2), . . f(M-1)\}$ denotes any M uniformly spaced samples from a corresponding continuous function.

Discrete Fourier Transform

- The discrete Fourier transform pair that applies to sampled functions is given by:

$$
F(u)=\frac{1}{M} \sum_{x=0}^{M-1} f(x) \exp [-j 2 \pi u x / M] \quad \text { For } \mathrm{u}=0,1,2, \ldots, \mathrm{M}-1
$$

$$
f(x)=\sum_{u=0}^{M-1} f(u) \exp [j 2 \pi u x / M] \quad \text { For } x=0,1,2, \ldots, M-1
$$

Discrete Fourier Transform

- To compute $F(u)$ we substitute $u=0$ in the exponential term and sum for all values of x
- We repeat for all Mvalues of u
- It takes M^{*} M summations and multiplications

$$
F(u)=\frac{1}{M} \sum_{x=0}^{M-1} f(x) \exp [-j 2 \pi u x / M] \quad \text { For } u=0,1,2, \ldots, M-1
$$

- The Fourier transform and its inverse always exist!

Discrete Fourier Transform

- The values $\mathrm{u}=0,1,2, \ldots, \mathrm{M}-1$ correspond to samples of the continuous transform at values 0 , $\Delta u, 2 \Delta u, \ldots,(M-1) \Delta u$.
- i.e. $F(u)$ represents $F(u \Delta u)$, where:

$$
\Delta u=\frac{1}{M \Delta x}
$$

Details

$$
\begin{aligned}
& e^{j \theta}=\cos \theta=j \sin \theta \\
& \cos (-\theta)=\cos (\theta) \\
& F(u)=\frac{1}{M} \sum_{x=0}^{M-1} f(x)[\cos 2 \pi u x / M-j \sin 2 \pi u x / M]
\end{aligned}
$$

- Each term of the $F T(F(u)$ for every $u)$ is composed of the sum of all values of $f(x)$

Introduction to
 the Fourier Transform

- The Fourier transform of a real function is generally complex and we use polar coordinates:

$$
\begin{aligned}
& F(u)=R(u)+j I(u) \\
& F(u)=|F(u)| e^{j \phi(u)} \\
& |F(u)|=\left[R^{2}(u)+I^{2}(u)\right]^{1 / 2} \\
& \phi(u)=\tan ^{-1}\left[\frac{I(u)}{R(u)}\right]
\end{aligned}
$$

Introduction to the Fourier Transform

- $|F(u)|$ (magnitude function) is the Fourier spectrum of $f(x)$ and $\phi(u)$ its phase angle.
- The square of the spectrum

$$
P(u)=|F(u)|^{2}=R^{2}(u)+I^{2}(u)
$$

is referred to as the power spectrum of $f(x)$ (spectral density).

Introduction to
 the Fourier Transform

- Fourier spectrum: $|F(u, v)|=\left[R^{2}(u, v)+I^{2}(u, v)\right]^{1 / 2}$
- Phase:

$$
\phi(u, v)=\tan ^{-1}\left[\frac{I(u, v)}{R(u, v)}\right]
$$

- Power spectrum: $\quad P(u, v)=|F(u, v)|^{2}=R^{2}(u, v)+I^{2}(u, v)$

Discrete Fourier Transform

Discrete Fourier Transform

- In a 2-variable case, the discrete FT pair is:

$$
\begin{aligned}
F(u, v)= & \frac{1}{M N} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) \exp [-j 2 \pi(u x / M+v y / N)] \\
& \text { For } u=0,1,2, \ldots, \mathrm{M}-1 \text { and } \mathrm{v}=0,1,2, \ldots, \mathrm{~N}-1
\end{aligned}
$$

AND: $\quad f(x, y)=\sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u, v) \exp [j 2 \pi(u x / M+v y / N)]$

$$
\text { For } x=0,1,2, \ldots, M-1 \text { and } y=0,1,2, \ldots, N-1
$$

Discrete Fourier Transform

- Sampling of a continuous function is now in a 2D grid ($\Delta x, \Delta \mathrm{y}$ divisions).
- The discrete function $f(x, y)$ represents samples of the function $f\left(x_{0}+x \Delta x, y_{0}+y \Delta y\right)$ for $\mathrm{x}=0,1,2, \ldots, \mathrm{M}-1$ and $\mathrm{y}=0,1,2, \ldots, \mathrm{~N}-1$.

$$
\Delta u=\frac{1}{M \Delta x}, \quad \Delta v=\frac{1}{N \Delta y}
$$

Discrete Fourier Transform

- When images are sampled in a square array, $\mathrm{M}=\mathrm{N}$ and the FT pair becomes:

$$
F(u, v)=\frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x, y) \exp [-j 2 \pi(u x+v y) / N]
$$

For $\mathrm{u}, \mathrm{v}=0,1,2, . . \mathrm{N}-1$

AND: $\quad f(x, y)=\frac{1}{N} \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} F(u, v) \exp [j 2 \pi(u x+v y) / N]$

$$
\text { For } x, y=0,1,2, ., N-1
$$

Some Properties of the 2-D Fourier Transform

Translation
Distributivity and Scaling
Rotation
Periodicity and Conjugate Symmetry
Separability

Convolution and Correlation

Translation

$$
f(x, y) \exp \left[2 \pi\left(u_{0} x / M+v_{0} y / N\right)\right] \Leftrightarrow F\left(u-u_{0}, v-v_{0}\right)
$$

and

$$
f\left(x-x_{0}, y-y_{0}\right) \Leftrightarrow F(u, v) \exp \left[-j 2 \pi\left(u x_{0} / M+v y_{0} / N\right)\right]
$$

Translation

- The previous equations mean:
- Multiplying $\mathrm{f}(\mathrm{x}, \mathrm{y})$ by the indicated exponential term and taking the transform of the product results in a shift of the origin of the frequency plane to the point $\left(u_{0}, v_{0}\right)$.
- Multiplying $F(u, v)$ by the exponential term shown and taking the inverse transform moves the origin of the spatial plane to $\left(\mathrm{x}_{0}, y_{0}\right)$.
- A shift in $f(x, y)$ doesn't affect the magnitude of its Fourier transform

Distributivity and Scaling

$$
\begin{gathered}
\mathfrak{J}\left\{f_{1}(x, y)+f_{2}(x, y)\right\}=\mathfrak{J}\left\{f_{1}(x, y)\right\}+\mathfrak{T}\left\{f_{2}(x, y)\right\} \\
\mathfrak{J}\left\{f_{1}(x, y) \cdot f_{2}(x, y)\right\} \neq \mathfrak{T}\left\{f_{1}(x, y)\right\} \cdot \mathfrak{J}\left\{f_{2}(x, y)\right\}
\end{gathered}
$$

- Distributive over addition but not over multiplication.

Distributivity and Scaling

- For two scalars a and b,

$$
\begin{gathered}
a f(x, y) \Leftrightarrow a F(u, v) \\
f(a x, b y) \Leftrightarrow \frac{1}{|a b|} F(u / a, v / b)
\end{gathered}
$$

Rotation

- Polar coordinates:
$x=r \cos \theta, \quad y=r \sin \theta, \quad u=\omega \cos \varphi, \quad v=\omega \cos \varphi$

Which means that:

$$
f(x, y), F(u, v) \text { become } f(r, \theta), F(\omega, \varphi)
$$

Rotation

$$
f\left(r, \theta+\theta_{0}\right) \Leftrightarrow F\left(\omega, \varphi+\theta_{0}\right)
$$

- Which means that rotating $f(x, y)$ by an angle θ_{0} rotates $F(u, v)$ by the same angle (and vice versa).

Periodicity \&

Conjugate Symmetry

- The discrete FT and its inverse are periodic with period N :

$$
F(u, v)=F(u+M, v)=F(u, v+N)=F(u+M, v+N)
$$

Periodicity \& Coniugate Symmetry

- Although $F(u, v)$ repeats itself for infinitely many values of u and v, only the M, N values of each variable in any one period are required to obtain $f(x, y)$ from $F(u, v)$.
- This means that only one period of the transform is necessary to specify $F(u, v)$ completely in the frequency domain (and similarly $f(x, y)$ in the spatial domain).

Periodicity \&

Coniugate Symmetry

Periodicity \&

Conjugate Symmetry

- For real $f(x, y)$, FT also exhibits conjugate symmetry:

$$
\begin{array}{cc}
& F(u, v)=F^{*}(-u,-v) \\
\text { or } & |F(u, v)|=|F(-u,-v)|
\end{array}
$$

Periodicity \&

Conjugate Symmetry

- In essence:

$$
\begin{aligned}
& F(u)=F(u+N) \\
& |F(u)|=|F(-u)|
\end{aligned}
$$

- i.e. $F(u)$ has a period of length N and the magnitude of the transform is centered on the origin.

Separability

- The discrete FT pair can be expressed in separable forms which (after some manipulations) can be expressed as:

$$
F(u, v)=\frac{1}{M} \sum_{x=0}^{M-1} F(x, v) \exp [-j 2 \pi u x / M]
$$

Separability

- For each value of x, the expression inside the brackets is a 1-D transform, with frequency values $\mathrm{v}=0,1, \ldots, \mathrm{~N}-1$.
- Thus, the 2-D function $F(x, v)$ is obtained by taking a transform along each row of $f(x, y)$ and multiplying the result by N .

Separability

- The desired result $F(u, v)$ is then obtained by making a transform along each column of $F(x, v)$.

Convolution

- Convolution theorem with FT pair:

$$
\begin{aligned}
& f(x)^{*} g(x) \Leftrightarrow F(u) G(u) \\
& f(x) g(x) \Leftrightarrow F(u)^{*} G(u)
\end{aligned}
$$

Convolution

- Discrete equivalent:

$$
f_{e}(x) * g_{e}(x)=\frac{1}{M} \sum_{m=0}^{M-1} f_{e}(m) g_{e}(x-m)
$$

- Discrete, periodic array of length M.
$\cdot x=0,1,2, \ldots, M-1$ describes a full period of $f_{e}(x)^{*} g_{e}(x)$.
- Summation replaces integration.

Correlation

- Correlation of two functions: $f(x) \circ g(x)$

$$
f(x) \circ g(x)=\int_{-\infty}^{\infty} f^{*}(\alpha) g(x+\alpha) d \alpha
$$

- Types: autocorrelation, cross-correlation
- Used in template matching

Correlation

- Correlation theorem with FT pair:

$$
\begin{aligned}
& f(x, y) \circ g(x, y) \Leftrightarrow F^{*}(u, v) G(u, v) \\
& f^{*}(x, y) g(x, y) \Leftrightarrow F(u, v) \circ G(u, v)
\end{aligned}
$$

Correlation

- Discrete equivalent:

$$
f_{e}(x) \circ g_{e}(x)=\frac{1}{M} \sum_{m=0}^{M-1} f_{e}{ }^{*}(m) g_{e}(x+m)
$$

For $\mathrm{x}=0,1,2, . ., \mathrm{M}-1$

Fast Fourier Transform

$$
F(u)=\frac{1}{M} \sum_{x=0}^{M-1} f(x) \exp [-j 2 \pi u x / M]
$$

- Number of complex multiplications and additions to implement Fourier Transform M2 (M complex multiplications and $\mathrm{N}-1$ additions for each of the N values of u).

Fast Fourier Transform

- The decomposition of FT makes the number of multiplications and additions proportional to $\mathrm{M}_{\log _{2} \mathrm{M} \text { : }}$
- Fast Fourier Transform or FFT algorithm.
- E.g. if $\mathrm{M}=1021$ the usual method will require 1000000 operations, while FFT will require 10000.

Fast Fourier Transform

$$
F(u)=\frac{1}{M} \sum_{x=0}^{M-1} f(x) \exp [-j 2 \pi u x / M]
$$

- Number of complex multiplications and additions to implement Fourier Transform M2 (M complex multiplications and $\mathrm{N}-1$ additions for each of the N values of u).

Fast Fourier Transform

- The decomposition of FT makes the number of multiplications and additions proportional to $\mathrm{M}_{\log _{2} \mathrm{M} \text { : }}$
- Fast Fourier Transform or FFT algorithm.
- E.g. if $\mathrm{M}=1021$ the usual method will require 1000000 operations, while FFT will require 10000.
?

