EE 204
 Lecture 10
 Norton Equivalent Circuits and Maxm. Power

Calculation of TEC (Method 3):

Recall method 1: 1) Find $V_{t h}=V_{o c}$ 2) Find $R_{t h}=\frac{V_{o c}}{i_{s c}}$
The first step in method 3 is the same as in method 1, we first find $V_{t h}=V_{o c}$.
To find $R_{t h}$ method 3 uses a different technique, as explained next:

1) Set all independent sources in circuit A to zero [leave dependent sources as they are]
2) Calculate $R_{e q}=R_{t h}$
[the equivalent resistance after all independent sources have been set to zero is equal to the Thevenin's resistance]

Figure 1

Figure 2

To set an independent voltage source to zero \Rightarrow replace it with a short circuit

Figure 3
To set an independent current source to zero \Rightarrow replace it with an open circuit

Figure 4

Example 1:

Calculate the TEC.

Figure 5
Solution:
Calculate $V_{t h}=V_{o c}$ [Let us use the mesh analysis, since there is only one actual unknown]
$i_{3}=0$ [because of the open circuit]
$\therefore i_{2}=-3$
KVL around mesh $1 \Rightarrow-25+5 i_{1}+20\left(i_{1}-(-3)\right)=0 \quad \Rightarrow \quad i_{1}=-1.4 A$
KVL around the outer circuit $\Rightarrow-25+5(-1.4)+4(0)+V_{o c}=0 \quad \Rightarrow \quad V_{o c}=32 V$

Figure 6

To find $R_{t h}$:

Set all independent sources to zero
$3 A \Rightarrow$ replace with an open circuit
$25 V \Rightarrow$ replace with a short circuit
Calculate $R_{e q}=R_{\text {th }}$

Figure 7
$5 \Omega \| 20 \Omega \quad \Rightarrow \quad 4 \Omega$
$\therefore R_{e q}=R_{t h}=4+4=8 \Omega$

Figure 8

The resulting TEC is:

Figure 9

The Norton Equivalent Circuit:

Instead of representing circuit A with a voltage source in series with a resistor, we can represent it with a current source in parallel with a resistor.

The is called Norton Equivalent Circuit (NEC)
In general, the TEC \& NEC circuits are related by source transformation. Then:

1) The values of the resistances in the TEC \& NEC are the same.
2) Using source transformation, the current source I in the NEC is given by:
$I=\frac{V_{t h}}{R_{t h}}$ [the same as the short circuit current]
$\therefore I=\frac{V_{t h}}{R_{t h}}=I_{s c}$

> In general:

We know the TEC $\quad \Leftrightarrow \quad$ We Know the NEC

(TEC)

(NEC)

Figure 16

Example1:

Find the Norton Equivalent Circuit with respect to the terminals a, b for the circuit

Solution:

Using source transformation: $\mathrm{V}=9 \times 12=108 \mathrm{~V}$

Combine series resistors $12+2+4=18$ Ohms

Draw circuit again V=108 V in series with 18 Ohms

ST again: $I=V / R \quad I=108 / \mathbf{1 8}=6 \mathrm{~A}$
Draw Circuit 6A(up) in // to 18 //9

Combine series resistors $18 / / 9=6$ Ohms
Draw Circuit 6A(up) in // to 6 Ohms

Therefore NEC:
IN $=6 \mathrm{~A}$
RN=60hms

Example2:

Determine the current I in the circuit by reducing the circuit attached to the $12-\Omega$ resistor to a TE. Find the NEC.

Solution:

Remove $12-\Omega$ resistor mark $V_{\text {OC }}$

To find Vth let us determine $V_{O C}$
Using ST for the source of 4 v in series with $2-\Omega$ resistor we get: $I=2 A$ (up) // $2-\Omega$

Combine the // resistors: $2 / / 2=1 \Omega$

Combine the 2 sources we get $I=8 \mathrm{~A}$ (down)

ST again gives: $V_{O C}=-8 \mathrm{~V}$

Draw circuit \mathbf{V} in series with $3+1=4 \Omega$

Find Rth
$R_{T H}=\frac{v_{x}}{i_{x}}=3 \Omega+(2 \Omega / / 2 \Omega)=4 \Omega$
Therefore TEC : Draw circuit

$$
\therefore i=\frac{-8}{4+12}=0.5 \mathrm{~A}
$$

To get NEC use ST:

$I_{N}=-8 A(\mathbf{u p})$
$R_{N}=4 \Omega$
Draw Circuit (add the $12-\Omega$ resistor)

KVL (Highlight loop)
$V_{O C}+10+4 I_{4}=0$
$V_{\text {OC }}+6 I_{1}+6 I_{2}=0$

1 and 2 give: $6 I_{1}+6 I_{2}=10+4 I_{4}$

KCL at node a:
$I_{4}+I_{2}+5=0$
or $I_{4}=-I_{2}-5$
Substitute (4) into (3) :
$10-20-4 I_{2}=6 I_{1}+6 I_{2} \quad \Rightarrow \quad 10+10 I_{2}+6 I_{1}=0$
$\mathbf{K V L}-10+6 I_{1}+3 I_{3}=0$
KCL at node c
$I_{3}=I_{1}-I_{2}$
6 and 7 give: $-10+6 I_{1}+3\left(I_{1}-I_{2}\right)=0$
or

$$
\begin{equation*}
9 I_{1}-3 I_{2}=10 \tag{8}
\end{equation*}
$$

Solve equations (5) and (8) [Subtract $3 x(5)$ from $2 x(6)]$ to get: $36 I_{2}=-50$ or $I_{2}=-\frac{25}{18}$

Substitute in (8) to get $I_{1} \quad 9 I_{1}=10-3 \frac{25}{18}$
$\therefore I_{1}=\frac{35}{54}=0.65 \mathrm{~A}$
Therefore $V_{\text {OC }}=-6\left(I_{1}+I_{2}\right)$
$\therefore V_{\text {OC }}=\frac{40}{9}=4.44 \mathrm{~V}$

