EE 204 Lecture 10 Norton Equivalent Circuits and Maxm. Power

Calculation of TEC (Method 3):

Recall method 1: 1) Find $V_{th} = V_{oc}$ 2) Find $R_{th} = \frac{V_{oc}}{i_{sc}}$

The *first* step in method 3 is the *same as in method 1*, we first find $V_{th} = V_{oc}$.

To find R_{th} method 3 uses a *different* technique, as explained next:

1) Set all independent sources in circuit A to zero [leave dependent sources as they are]

2) Calculate $R_{eq} = R_{th}$

[the equivalent resistance *after all independent* sources have been set to *zero* is equal to the Thevenin's resistance]

To set an *independent voltage* source to zero \Rightarrow replace it with a *short* circuit

To set an *independent current* source to zero \Rightarrow replace it with an *open* circuit

Example 1:

Calculate the TEC.

Solution:

Calculate $V_{th} = V_{oc}$ [Let us use the mesh analysis, since there is only *one actual* unknown]

 $i_3 = 0$ [because of the open circuit]

$$\therefore i_2 = -3$$

KVL around mesh 1 \Rightarrow $-25 + 5i_1 + 20(i_1 - (-3)) = 0 \Rightarrow i_1 = -1.4A$

KVL around the outer circuit $\Rightarrow -25 + 5(-1.4) + 4(0) + V_{oc} = 0 \Rightarrow V_{oc} = 32V$

To find R_{th} :

Set all independent sources to zero

 $3A \Rightarrow$ replace with an *open* circuit

$25V \implies$ replace with a *short* circuit

Calculate $R_{eq} = R_{th}$

The resulting TEC is:

The Norton Equivalent Circuit:

Instead of representing circuit A with a voltage source in series with a resistor, we can represent it with a current source in parallel with a resistor.

The is called Norton Equivalent Circuit (NEC)

In general, the TEC & NEC circuits are related by source transformation. Then:

1) The values of the resistances in the TEC & NEC are the same.

2) Using source transformation, the current source I in the NEC is given by:

$$I = \frac{V_{th}}{R_{th}}$$
 [the same as the short circuit current]

 $\therefore I = \frac{V_{th}}{R_{th}} = I_{sc}$

Example1:

Find the Norton Equivalent Circuit with respect to the terminals a, b for the circuit

Solution:

Using source transformation: V=9x12=108 V

Combine series resistors 12 +2 +4 =18 Ohms

ST again: I=V/R I=108/18=6A

Combine series resistors 18 //9 =6 Ohms

Draw Circuit 6A(up) in // to 6 Ohms

Therefore NEC: IN=6A RN=6Ohms

Example2:

Determine the current I in the circuit by reducing the circuit attached to the $12-\Omega$ resistor to a TE. Find the NEC.

Solution: Remove $12-\Omega$ resistor mark V_{oc}

To find Vth let us determine V_{OC}

Using ST for the source of 4v in series with $2-\Omega$ resistor we get: I =2A (up) // $2-\Omega$

Combine the // resistors: $2//2 = 1\Omega$

Combine the 2 sources we get I=8A (down)

ST again gives : $V_{OC} = -8V$

Draw circuit V in series with $3+1=4\Omega$

Find Rth

 $R_{TH} = \frac{v_x}{i_x} = 3\Omega + (2\Omega / / 2\Omega) = 4\Omega$

Therefore TEC : Draw circuit

$$\therefore i = \frac{-8}{4+12} = 0.5A$$

To get NEC use ST:

 $I_N = -8A$ (up) $R_N = 4\Omega$ Draw Circuit (add the $12 - \Omega$ resistor)

KVL (Highlight loop) $V_{oc} + 10 + 4I_4 = 0$

 $V_{oc} + 10 + 4I_4 = 0$ (1) $V_{oc} + 6I_1 + 6I_2 = 0$ (2)

1 and 2 give: $6I_1 + 6I_2 = 10 + 4I_4$ (3)

KCL at node a:

 $I_4 + I_2 + 5 = 0$

or	$I_{+} = -$	$-I_{2}-5$	(4)
UI.	4	12 2	· · · · ·

Substitute (4) into (3) : $10-20-4I_2 = 6I_1 + 6I_2 \implies 10+10I_2 + 6I_1 = 0$

(7)

 $\mathbf{KVL} - 10 + 6I_1 + 3I_3 = 0 \tag{6}$

KCL at node c $I_3 = I_1 - I_2$

6 and 7 give: $-10+6I_1+3(I_1-I_2)=0$ or $9I_1-3I_2=10$ (8)

Solve equations (5) and (8) [Subtract 3x(5) from 2x(6)] to get: $36I_2 = -50$ or $I_2 = -\frac{25}{18}$ (9)

(5)

Substitute in (8) to get I₁ $9I_1 = 10 - 3\frac{25}{18}$

$$\therefore I_1 = \frac{35}{54} = 0.65A \tag{10}$$

Therefore $V_{oc} = -6(I_1 + I_2)$ $\therefore V_{oc} = \frac{40}{9} = 4.44V$