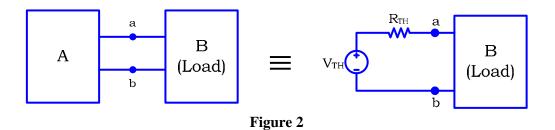

EE 204 Lecture 09 Thevenin Equivalent Circuits

Thevenin Equivalent Circuit:

Given an electrical circuit \Rightarrow split it into circuits A & B

Call circuit B "the load"

Notice that circuits A & B are connected by the *two* terminals *a* & *b*


Thevenin theorem:

In general, it is possible to replace circuit A with a voltage source in series with a resistor.

The voltage source is labeled V_{th} (Thevenin voltage)

The resistance is labeled R_{th} (Thevenin resistance)

The new circuit is called the Thevenin Equivalent Circuit (TEC) of circuit A

We will consider *four* methods for finding the TEC.

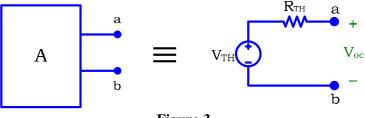
Only two methods will be presented in this class.

Finding the TEC (Method 1):

Calculate 1) $V_{th} = V_{oc}$ & 2) $R_{th} = \frac{V_{oc}}{i_{sc}}$

1) Calculate V_{th} :

First we remove the load (circuit B)


The terminals *a* & *b* become *open-circuited* (no load)

The resulting voltage across the terminals a & b is labeled V_{oc} (Open-circuit voltage)

Current through the *open circuit* is zero \Rightarrow no current flows through R_{th}

 $\mathrm{KVL} \quad \Rightarrow \quad -V_{th} + 0R_{th} + V_{oc} = 0 \quad \Rightarrow \quad V_{th} = V_{oc}$

We calculate the *open circuit voltage* of circuit A and equate it to V_{th} .

2) Calculate
$$R_{th}$$
 using $R_{th} = \frac{V_{oc}}{i_{sc}}$

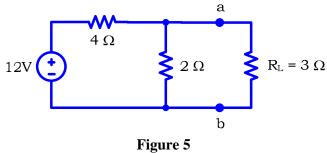
Remove the load and place a *short circuit* across "a-b"

The current that flows in the short circuit is labeled i_{sc}

The voltage across the short circuit is zero

$$\text{KVL} \quad \Rightarrow \quad -V_{th} + i_{sc}R_{th} + 0 = 0 \quad \Rightarrow \quad V_{th} = i_{sc}R_{th}$$

$$\therefore R_{th} = \frac{V_{th}}{i_{sc}} \qquad \text{[this can be used to calculate } R_{th}\text{]}$$


Summary:

1) Calculate $V_{oc} = V_{th}$

2) Calculate
$$i_{sc} \implies \text{use } R_{th} = \frac{V_{oc}}{i_{sc}} = \frac{V_{th}}{i_{sc}}$$

Example 1:

Calculate the TEC seen by the 3Ω resistor.

Solution:

Remove the 3Ω load

The voltage V_{oc} is also across the 2 Ω resistor

VDR
$$\Rightarrow V_{oc} = \frac{2}{2+4}(12) = 4V$$

$$4 \Omega + V_{oc} \geq 2 \Omega + V_{oc} = -b$$
Figure 6

Place a short circuit

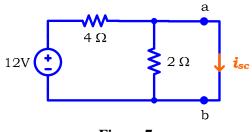
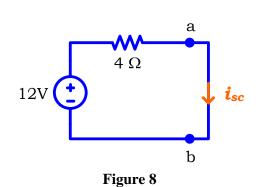
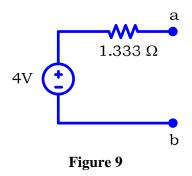
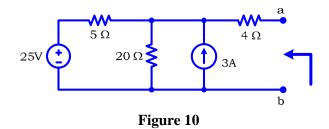



Figure 7

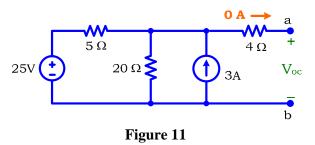

$$2\Omega \|$$
short circuit $\Rightarrow R_{eq} = \frac{0 \times 2}{0+2} = 0\Omega$ (short circuit)

[A short circuit in parallel with any resistance is equivalent to a short circuit]

$$\therefore i_{sc} = \frac{12}{4} = 3A$$
$$\therefore R_{eq} = \frac{V_{oc}}{i_{sc}} = \frac{4}{3} = 1.333\Omega$$



 \therefore the TEC seen by the 3 Ω resistance is:



Example 2:

Calculate the TEC to the left of "a-b" [load has already been removed].

The current through the 4Ω resistor is zero, because of the open circuit.

Voltage drop across 4Ω is zero (why?)

KVL \Rightarrow Voltage across the 3A & 20 Ω is V_{oc}

We can calculate V_{oc} by any method we choose, let us use KVL, KCL & Ohm's law.

[Also, the mesh analysis is efficient in this case, because we have only one actual unknown. Why?].

The 3A current completely goes to the left (why?)

Assume current i through 5Ω

KCL \Rightarrow current through 20 Ω is (i+3)

KVL
$$\Rightarrow -25+5i+20(i+3) = 0 \Rightarrow i = -\frac{7}{5}A$$

Ohm's law $\Rightarrow V_{oc} = 20(i+3) = 20(-\frac{7}{5}+3) = 32V$

 $\therefore V_{th} = V_{oc} = 32V$

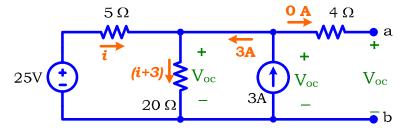
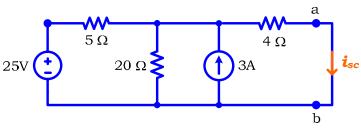


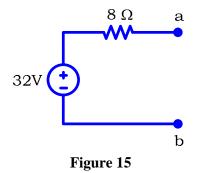
Figure 12

Place a short circuit across "a-b"

We can calculate i_{sc} by any method we choose

Let us use the NA




Figure 13

Using the reference node as shown \Rightarrow only V_2 is unknown.

KCL at node 2
$$\Rightarrow \frac{V_2 - 25}{5} + \frac{V_2}{20} - 3 + \frac{V_2 - 0}{4} = 0 \Rightarrow V_2 = 16V$$

 $\therefore i_{sc} = \frac{V_2 - 0}{4} = \frac{16}{4} = 4A$
 $\therefore R_{eq} = \frac{V_{oc}}{i_{sc}} = \frac{32}{4} = 8\Omega$
 $V_1 = 25V$ V_2
 5Ω 20Ω $13A$ i_{sc}

Figure 14

The resulting TEC is:

Finding the TEC (Method 2):

We can also use ST to find the TEC. This is the second method.

Example 3:

Repeat the previous example using ST to find the TEC.

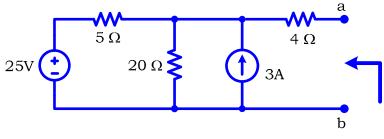
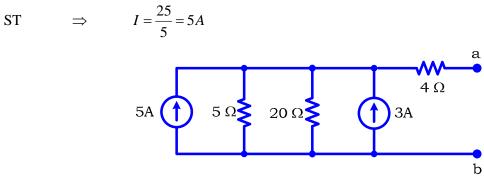
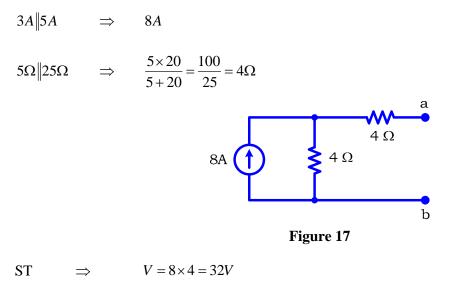
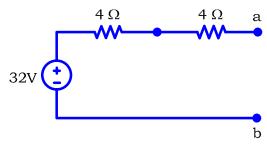
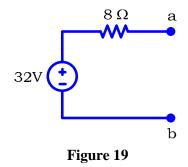




Figure 10

Solution:




Figure 18

 $4 + 4 = 8\Omega$

The circuit is reduced to a voltage source in series with a resistor.

 $\therefore V_{th} = 32V \qquad \& \qquad R_{th} = 8\Omega$

Same answer as before.

Using ST, we are able to find V_{th} & R_{th} simultaneously.

Methods 1 & 2 are not always applicable. They have certain limitations.

In the coming classes, we will present the *other two* methods for finding the TEC and also discuss the *limitations* and *advantages* of the *four* methods.