EE 204
 Lecture 08
 Superposition

The Superposition Principle:

Consider a multi-input multi-output general circuit.
The inputs $S_{1}, S_{2}, S_{3}, \ldots . ., S_{N}$ represent either independent voltage or current sources
The outputs $O_{1}, O_{2}, O_{3}, \ldots . . ., O_{M}$ represent the remaining voltages and currents
For instance, O_{1} may be current through a resistor, and O_{2} may be voltage across a current source

Figure 1

For simplicity, let us consider a single-output circuit, with one output quantity, U
All the inputs $S_{1}, S_{2}, S_{3}, \ldots . ., S_{N}$ affect the output U
In other words, U has some contribution from each of the sources $S_{1}, S_{2}, S_{3}, \ldots \ldots, S_{N}$

Figure 2

The contribution of S_{1} to U is labeled U_{1}
The contribution of S_{2} to U is labeled U_{2}

Figure 3

In general, the contribution of S_{i} to U is labeled U_{i}

$$
\begin{gathered}
\Downarrow \\
U=U_{1}+U_{2}+U_{3}+\ldots \ldots . .+U_{N}
\end{gathered}
$$

This is called the Superposition Principle.
This principle is valid for linear circuits only.
All the circuits covered in this course are linear circuits.

Figure 4

The output U may be current or voltage, but it cannot be power or energy.
Thus, the SP principle applies to currents and voltages, but it does not apply to power or energy.

To calculate $U_{1} \quad \Rightarrow$ set all independent sources to zero except S_{1}

Figure 5
To calculate $U_{2} \quad \Rightarrow$ set all independent sources to zero except S_{2}

Figure 6

To calculate $U_{i} \Rightarrow$ set all independent sources to zero except S_{i}

Figure 7

To set a voltage source to zero \Rightarrow replace it with a short circuit
To set a current source to zero \Rightarrow replace it with an open circuit

Extension of SP to multi-output circuits is straightforward.

Example 1:

Calculate I using SP.

Figure 8
Solution:
First calculate $I^{\prime}=\left.I\right|_{4 V}$ (current I due to only the $4 V$ source)
Set the remaining independent sources to zero \Rightarrow replace $2 A$ with an open circuit
$I^{\prime}=\frac{4}{6+10}=0.25 \mathrm{~A}$

Figure 9

Next calculate $I^{\prime \prime}=\left.I\right|_{2 \mathrm{~A}}$ (current I due to only the 2 A source)
Set the remaining independent sources to zero \Rightarrow replace $4 V$ with a short circuit $\mathrm{CDR} \Rightarrow I^{\prime \prime}=\frac{6}{6+10} \times 2=\frac{12}{16}=0.75 \mathrm{~A}$

Figure 10
$\therefore I=I^{\prime}+I^{\prime \prime}=0.25+0.75=1.00 \mathrm{~A}$

Example 2:

Calculate I using SP.

Figure 11
Solution:

Calculate: $I^{\prime}=\left.I\right|_{8 V}$
$2 A \& 4 A \Rightarrow$ replaced by open circuits
Current through 4Ω is zero (why?)
The 4Ω has no effect $\Rightarrow 6 \Omega \quad \& 10 \Omega$ are in series
$\therefore I^{\prime}=\frac{8}{6+10}=0.5 A$

Figure 12

Next calculate: $I^{\prime}=\left.I\right|_{4 A}$
$8 V \Rightarrow$ replaced by a short circuit
$2 A \Rightarrow$ replaced by an open circuit
4Ω in series with $4 A \Rightarrow$ equivalent to $4 A$
$\mathrm{CDR} \Rightarrow I^{\prime \prime}=-\frac{6}{6+10} \times 4=-1.5 \mathrm{~A}$

Figure 13

Finally calculate: $I^{\prime \prime}=\left.I\right|_{2 A}$
$8 V \Rightarrow$ replaced by a short circuit
$4 A \Rightarrow$ replaced by an open circuit
4Ω in series with $2 A \Rightarrow$ equivalent to $2 A$
$\mathrm{CDR} \Rightarrow I^{\prime \prime}=\frac{6}{6+10} \times 2=0.75 \mathrm{~A}$

Figure 14
$\therefore I=I^{\prime}+I^{\prime \prime}+I^{\prime \prime \prime}=(0.5)+(-1.5)+(0.75)=-0.25 A$

Example 3:

Calculate:
a) $P^{\prime}=\left.P_{5 \Omega}\right|_{8 V}$ (Power absorbed by the 5Ω resistor due only the $8 V$ source)
b) $P^{\prime \prime}=\left.P_{5 \Omega}\right|_{10 \mathrm{~V}}$ (Power absorbed by the 5Ω resistor due only the 10 V source)
c) Show that $P \neq P^{\prime}+P^{\prime \prime}$

Figure 20

Solution:
a) $I^{\prime}=\frac{8}{5}=1.6 \mathrm{~A} \quad \Rightarrow \quad P^{\prime}=(1.6)^{2} 5=12.8 \mathrm{~W}$
b) $I^{\prime \prime}=-\frac{10}{5}=-2 A \quad \Rightarrow \quad P^{\prime}=(-2)^{2} 5=20 \mathrm{~W}$
c) $I=I^{\prime}+I^{\prime \prime}=1.6-2=-0.4 \mathrm{~A} \quad \Rightarrow \quad P=(-0.4)^{2} 5=0.8 \mathrm{~W}$

$$
P^{\prime}+P^{\prime \prime}=12.8+20=32.8
$$

$\therefore P \neq P^{\prime}+P^{\prime \prime}$

Figure 21

Therefore, for power calculation, we can use SP to calculate total currents and voltages, from which we can calculate the power.

From the previous examples we can draw the following conclusions:
1- The number of partial-circuits equals the number of independent sources.
2- The algebraic sign of the unknown must be accounted for.
3- The voltage polarity and the current direction remain the same in all partial-circuits.
4- Dependent sources are never set to zero.
5- SP is not applicable to Power (or to energy).

