EE 204
 Lecture 07 Source Transformation

Source Transformation:

Given an ideal voltage source V_{s} in series with a resistor R_{s}.
\Downarrow (can we replace them with)
An ideal current source I_{s} in parallel with a resistor R_{p} ?

Figure 1

Connect the same load resistor R_{L} across terminal "a-b" in both circuits.
If circuits " 1 " and " 2 " are equivalent $\Rightarrow \quad I_{1}=I_{2} \quad \& \quad V_{1}=V_{2}$
Circuit " 1 " $\Rightarrow I_{1}=\frac{V_{s}}{R_{e q}}=\frac{V_{s}}{R_{s}+R_{L}}$
Circuit "2" $\Rightarrow I_{2}=\frac{R_{p}}{R_{p}+R_{L}} I_{s}$
(2) (CDR is used)
$I_{1}=I_{2} \Rightarrow \frac{V_{s}}{R_{s}+R_{L}}=\frac{R_{p} I_{s}}{R_{p}+R_{L}}$
If we choose $R_{p}=R_{s} \Rightarrow V_{s}=I_{s} R_{p}=I_{s} R_{s}$

$$
\therefore R_{s}=R_{p} \quad \& \quad V_{s}=I_{s} R_{s}
$$

\Downarrow
V_{s} in series with $R_{s} \quad \Leftrightarrow \quad I_{s}$ in parallel with R_{s}

Figure 2

The above conversion is called Source Transformation (ST).
Circuits (1) \& (2) are equivalent. However, they are not the same.

When any load is connected to terminals " a " \& " b " of circuits (1) \& (2)
\Downarrow
Load cannot distinguish between the two circuits.

Circuits (1) \& (2) are equivalent from the outside when accessed from terminals "a" \& "b". Circuits (1) \& (2) are different from the inside.

Example 1:

Covert the following circuits using ST.

Figure 3

Solution:
Circuit (1):
$R_{p}=R_{s}=2 \Omega$
$I_{s}=\frac{V_{s}}{R_{s}}=\frac{3}{2}=1.5 \mathrm{~A}$

Figure 4
Circuit (2):
$R_{p}=R_{s}=5 \Omega$
$I_{s}=\frac{V_{s}}{R_{s}}=\frac{4}{5}=0.8 \mathrm{~A}$ (downwards. Why?)

Figure 5

Example 2:

Covert the following circuits using ST.

(1)

(2)

Figure 6

Solution:
Circuit (1):
$R_{s}=R_{p}=3 \Omega \quad \& \quad V_{s}=R_{s} I_{s}=3(3)=9 V$

Figure 7
Circuit (2):
$R_{s}=R_{p}=5 \Omega \quad \& \quad V_{s}=R_{s} I_{s}=5(2)=10 \mathrm{~V} \quad$ (upper voltage polarity is negative. Why?)

Figure 8

You need to be careful when using ST, as we will see in the next example.

Example 3:

Covert the following circuits using ST.

(1)

(2)

Figure 9

Solution:
Circuit (1):
A resistor in parallel with a voltage source (not in series) $\Rightarrow \quad$ ST does not apply.

A resistor in parallel with a voltage source \Rightarrow equivalent to a voltage source.

Figure 10
Circuit (2):
A resistor in series with a current source (not in parallel) $\Rightarrow \quad$ ST does not apply.

Figure 11
A resistor in series with a current source \Rightarrow equivalent to a current source.

Example 4:

Use ST to calculate:
a) i_{1}
b) i_{2}

Figure 12
Solution:
It is a good idea to first label some points on the circuit.

Figure 13
Apply ST to the $2 \mathrm{~A} \& 1 \Omega$ combination $\Rightarrow V=I R=2(1)=2 V$
Notice that i_{2} cannot be drawn. It disappears. Why?
The current through the 1Ω of the transformed circuit is not i_{2}. Why?

Reason: $R_{p}=R_{s}$ means the two resistors have the same value. It does not mean we have the same resistor!!
$\because 2 \Omega \& 1 \Omega$ in series \Rightarrow current through the 1Ω of the transformed circuit is i_{1}.

Figure 14
$2 \Omega \& 1 \Omega$ in series $\Rightarrow 3 \Omega$
$8 V \& 2 V$ in series $\Rightarrow 8-2=6 V$
a) $i_{1}=\frac{6}{3}=2 \mathrm{~A}$
b) KCL at node " a " (of the original circuit) $\Rightarrow i_{2}=i_{1}+2=2+2=4 \mathrm{~A}$

Figure 15

Figure 12

Example 5:

Use ST to calculate V.

Figure 16

Solution:
Apply ST to ($3 V$ in series with 1Ω) \& (18 V in series with 2Ω)
$I_{s 1}=\frac{3}{1}=3 \mathrm{~A} \quad \& \quad I_{s 2}=\frac{18}{2}=9 \mathrm{~A}$

Figure 17

$$
\begin{aligned}
& 1 \Omega\|3 \Omega\| 2 \Omega \quad \Rightarrow \quad R_{e q}=\frac{1}{1+\frac{1}{3}+\frac{1}{2}}=0.545 \Omega \\
& 3 A \| 9 A \quad \Rightarrow \quad I_{e q}=9-3=6 \mathrm{~A} \\
& \therefore V=I_{e q} R_{e q}=6(.545)=3.273 \mathrm{~V}
\end{aligned}
$$

Figure 18

Example 5: Using ST, calculate:
a) i_{1}
b) i_{2}

Figure 19
Solution:
ST $\Rightarrow V=3 \times 2=6 V$

Figure 20
$2 \Omega \| 8 \Omega \quad \Rightarrow \quad 10 \Omega$

Figure 21

ST $\Rightarrow \quad I=\frac{6}{10}=0.6 A$

Figure 22
$1 \Omega \| 10 \Omega \Rightarrow \frac{10 \times 1}{10+1}=\frac{10}{11}=0.909 \Omega$

Figure 23
$\mathrm{ST} \Rightarrow V=0.909 \times 0.6=0.545 \mathrm{~V}$

Figure 24
$R_{e q}=5+0.909=5.909 \Omega \quad \& \quad V_{e q}=7+0.545=7.545 \mathrm{~V}$
a) $\therefore i_{1}=\frac{7.545}{5.909}=1.277 \mathrm{~A}$
b) KVL (in the original circuit) $\Rightarrow-7+5 i_{1}+1 i_{2}=0 \Rightarrow-7+5(1.277)+1 i_{2}=0 \Rightarrow i_{2}=0.615 A$

Figure 25

Figure 19

