EE 204 Lecture 07 Source Transformation

Source Transformation:

Given an ideal voltage source V_s in series with a resistor R_s .

 \Downarrow (can we replace them with)

An ideal current source I_s in parallel with a resistor R_p ?

Connect the *same* load resistor R_L across terminal "a-b" in both circuits.

If circuits "1" and "2" are *equivalent* \Rightarrow $I_1 = I_2$ & $V_1 = V_2$

Circuit "1" $\Rightarrow I_1 = \frac{V_s}{R_{eq}} = \frac{V_s}{R_s + R_L}$ (1) Circuit "2" $\Rightarrow I_2 = \frac{R_p}{R_p + R_L} I_s$ (2) (CDR is used)

$$I_1 = I_2 \implies \frac{V_s}{R_s + R_L} = \frac{R_p I_s}{R_p + R_L}$$
 (3)

If we choose $R_p = R_s \implies V_s = I_s R_p = I_s R_s$

$$\therefore R_s = R_p \qquad \& \qquad V_s = I_s R$$

∜

 V_s in series with $R_s \iff I_s$ in parallel with R_s

The above conversion is called *Source Transformation* (ST).

Circuits (1) & (2) are *equivalent*. However, they are *not the same*.

When *any load* is connected to terminals "a" & "b" of circuits (1) & (2)

↓

Load *cannot distinguish* between the two circuits.

Circuits (1) & (2) are equivalent from the outside when accessed from terminals "a" & "b".

Circuits (1) & (2) are *different* from the *inside*.

Example 1:

Covert the following circuits using ST.

Solution:

Circuit (1):

$$R_p = R_s = 2\Omega$$

Circuit (2):

Example 2:

Covert the following circuits using ST.

Figure 6

Solution:

Circuit (1):

$$R_s = R_p = 3\Omega \qquad \& \qquad V_s = R_s I_s = 3(3) = 9V$$

Circuit (2):

 $R_s = R_p = 5\Omega$ & $V_s = R_s I_s = 5(2) = 10V$ (upper voltage polarity is negative. Why?)

You need to be careful when using ST, as we will see in the next example.

Example 3:

Covert the following circuits using ST.

Solution:

Circuit (1):

A resistor *in parallel* with a voltage source (*not in series*) \Rightarrow ST *does not* apply.

A resistor in parallel with a voltage source \Rightarrow equivalent to a voltage source.

Circuit (2):

A resistor *in series* with a current source (*not in parallel*) \Rightarrow ST *does not* apply.

A resistor in series with a current source \Rightarrow equivalent to a current source.

Example 4:

Use ST to calculate:

a) *i*₁

b) *i*₂

Figure 12

Solution:

It is a good idea to first label some points on the circuit.

Apply ST to the 2A & 1 Ω combination \Rightarrow V = IR = 2(1) = 2V

Notice that i_2 cannot be drawn. It disappears. Why?

The current through the 1 Ω of the *transformed* circuit is *not* i_2 . Why?

Reason: $R_p = R_s$ means the two resistors have the *same* value. It *does not* mean we have the same resistor!!

 $\therefore 2\Omega \& 1\Omega$ in series \Rightarrow current through the 1Ω of the *transformed* circuit is i_1 .

- $2\Omega \& 1\Omega \text{ in series } \Rightarrow 3\Omega$ $8V \& 2V \text{ in series } \Rightarrow 8-2=6V$
- a) $i_1 = \frac{6}{3} = 2A$
- b) KCL at node "*a*" (of the original circuit) \Rightarrow $i_2 = i_1 + 2 = 2 + 2 = 4A$

Figure 15

Figure 12

Example 5:

Use ST to calculate V.

Solution:

Apply ST to (3V in series with 1Ω) & (18V in series with 2Ω)

$$1\Omega \| 3\Omega \| 2\Omega \implies R_{eq} = \frac{1}{1 + \frac{1}{3} + \frac{1}{2}} = 0.545\Omega$$

 $3A \| 9A \implies I_{eq} = 9 - 3 = 6A$

$$\therefore V = I_{eq}R_{eq} = 6(.545) = 3.273V$$

Example 5: Using ST, calculate:

a) *i*₁

b) *i*₂

Figure 19

Solution:

ST
$$\Rightarrow$$
 $V = 3 \times 2 = 6V$

Figure 20

 $2\Omega || 8\Omega \implies 10\Omega$

Figure 21

Figure 22

$$1\Omega \| 10\Omega \implies \frac{10 \times 1}{10 + 1} = \frac{10}{11} = 0.909\Omega$$

$$5\Omega$$

$$i_1$$

$$0.909\Omega$$

$$C$$

$$0.6A$$

Figure 23

ST \Rightarrow $V = 0.909 \times 0.6 = 0.545V$

Figure 24

 $R_{eq} = 5 + 0.909 = 5.909 \Omega \qquad \& \qquad V_{eq} = 7 + 0.545 = 7.545 V$

a)
$$\therefore i_1 = \frac{7.545}{5.909} = 1.277A$$

b) KVL (in the original circuit) $\Rightarrow -7 + 5i_1 + 1i_2 = 0 \Rightarrow -7 + 5(1.277) + 1i_2 = 0 \Rightarrow i_2 = 0.615A$

Figure 19