EE 204
 Lecture 06 VDR, CDR \& Circuit Solution by KVL and KCL

The Voltage Divider Rule (VDR)

The total voltage across the series resistors $R_{1}, R_{2}, \ldots, R_{N}$ is V .
$i=\frac{V}{R_{e q}}=\frac{V}{\sum_{i=1}^{N} R_{i}}$
$v_{x}=i R_{x}=\frac{V}{\sum_{i=1}^{N} R_{i}} R_{x}=\left(\frac{R_{x}}{\sum_{i=1}^{N} R_{i}}\right) V$
$\operatorname{VDR} \Rightarrow v_{x}=\left(\frac{R_{x}}{\sum_{i=1}^{N} R_{i}}\right) V$
$\mathrm{VDR} \quad \Rightarrow \quad v_{\text {resistor }}=\frac{\text { resistor }}{\text { sum }} \times($ total voltage $)$
The VDR is valid for any number of resistors in series.

Figure 10

Example 3:

Calculate $v_{1} \& v_{2}$
$\mathrm{VDR} \Rightarrow \quad v_{1}=\frac{4}{4+6} \times 30=12 \mathrm{~V}$
$\mathrm{VDR} \Rightarrow \quad v_{2}=\frac{6}{4+6} \times 30=18 \mathrm{~V}$

Figure 11
VDR $\quad \Rightarrow \quad$ Higher voltage drop across the higher resistance.

Example 4:

Calculate the unknown voltages.

Figure 12

Solution:
$5+7=12 \Omega \quad \Rightarrow \quad R_{1}=\frac{4 \times 12}{4+12}=3 \Omega$
$\mathrm{VDR} \Rightarrow \quad v_{1}=-\frac{15}{15+3} \times 36$ (a minus sign is required here. Why?) $\Rightarrow \quad v_{1}=-30 \mathrm{~V}$
$\mathrm{VDR} \quad \Rightarrow \quad v_{2}=\frac{3}{15+3} \times 36 \quad \Rightarrow \quad v_{2}=6 \mathrm{~V}$
Check: KVL $\Rightarrow-36-v_{1}+v_{2}=-36-(-30)+(6)=-36+30+6=0$
$\mathrm{VDR} \quad \Rightarrow \quad v_{3}=\frac{5}{5+7} \times v_{2}=\frac{5}{12} \times 6 \quad \Rightarrow \quad v_{3}=2.5 \mathrm{~V}$
$\mathrm{VDR} \quad \Rightarrow \quad v_{4}=\frac{7}{5+7} \times v_{2}=\frac{7}{12} \times 6 \quad \Rightarrow \quad v_{4}=3.5 \mathrm{~V}$

Figure 13

The Current Divider Rule (CDR)

The total current entering into the parallel combination of $R_{1} \& R_{2}$ is I
$V=I R_{e q}=I \frac{R_{1} R_{2}}{R_{1}+R_{2}}$
$I_{1}=\frac{V}{R_{1}} \quad \& \quad I_{2}=\frac{V}{R_{2}}$
$I_{1}=\frac{1}{R_{1}} \times \frac{R_{1} R_{2}}{R_{1}+R_{2}} I \quad \Rightarrow I_{1}=\frac{R_{2}}{R_{1}+R_{2}} I$
Similarly $\quad \Rightarrow I_{2}=\frac{R_{1}}{R_{1}+R_{2}} I$
CDR $\quad \Rightarrow \quad I=\frac{\text { other resistor }}{\text { sum }} \times$ total current
CDR applies to only two resistors in parallel.

Figure 14

Example 5:

a) Use CDR to calculate $I_{1} \& I_{2}$.
b) Verify your results by checking KCL.

Figure 15

Solution:
a)
$I_{1}=\frac{2}{2+5} \times 3 \quad \Rightarrow \quad I_{1}=\frac{6}{7} \mathrm{~A}$

$$
I_{2}=\frac{5}{2+5} \times 3 \quad \Rightarrow \quad I_{2}=\frac{15}{7} \mathrm{~A}
$$

b)

KCL at node "a" $\Rightarrow \quad I_{s}-I_{1}-I_{2}=3-\frac{6}{7}-\frac{15}{7}=3-\frac{21}{7}=0 \quad$ (KCL verified)

Figure 16

CDR $\quad \Rightarrow \quad$ Higher current passes through the lower resistance.

Example 6:

Use CDR to calculate $I_{1}, I_{2} \& I_{3}$.

Figure 17
Solution:
$6 \Omega \& 12 \Omega$ (in parallel) $\Rightarrow \frac{6 \times 12}{6+12}=\frac{72}{18}=4 \Omega$
$4 \Omega \& 4 \Omega$ (in parallel) $\Rightarrow \frac{4 \times 4}{4+4}=\frac{16}{8}=2 \Omega$
$\therefore R_{e q}=8+2=10 \Omega$
$I=\frac{20}{10}=2 \mathrm{~A}$
$\mathrm{CDR} \quad \Rightarrow \quad I_{4}=\frac{4}{4+4} \times 2=1 \mathrm{~A}$
CDR $\quad \Rightarrow \quad I_{3}=-\frac{4}{4+4} \times 2=-1 A \quad$ (the minus sign is necessary in this case. Why?)
$\operatorname{CDR} \quad \Rightarrow \quad I_{1}=\frac{12}{6+12} \times I_{4} \quad$ (because I_{4} is the total current through $6 \Omega \& 12 \Omega$)
$\therefore I_{1}=\frac{12}{18} \times 1=\frac{2}{3} \mathrm{~A}$
$\mathrm{CDR} \quad \Rightarrow \quad I_{2}=\frac{6}{6+12} \times 1=\frac{1}{3} \mathrm{~A}$
Check KCL at super node $\Rightarrow \quad I-I_{1}-I_{2}+I_{3}=2-\frac{2}{3}-\frac{1}{3}+(-1)=1-1=0 \quad$ (KCL verified)

Verify that the three parallel resistors $6 \Omega, 12 \Omega$ and 4Ω have the same voltage.

Figure 18

Solutions for Circuits Containing More than One Source

For Circuit with more than one source, we systematically apply KVL, KCL and Ohm's Law. It is obvious by now that:
$\$$ Currents through elements in series are equal. (Referred to as simple node)

* Voltages across elements in parallel are equal. (Referred to as simple loop)

Thus

* Apply KCL only for nonsimple nodes, ie for nodes connecting more than two elements. (Elements not in series).
Apply KVL only for nonsimple loops, ie for loops whose elements are not connected at both pairs of nodes. (Elements not in parallel)

Example 8
Determine the current i in the circuit of

Solution:
$-i_{2}-i+\frac{4}{5}=0$
$i_{2}=\frac{3}{5} \mathrm{~A}$
$-v_{2}+v_{1}+20=0$
$-\left(40 \times \frac{3}{5}\right)+20 i+20=0$
$i=\frac{1}{5} A$
Example 8
Determine the current i in the circuit

Solution:
$i=\frac{1}{5} A$
$i_{2}=\frac{3}{5} \mathrm{~A}$

Example 9
Determine the voltage V and current I in the circuit

Solution:

We don't know the voltage or current associated with each resistor, so we cannot apply Ohm's law or KVL. Hence we apply KCL at the single nonsimple node a to obtain the current through the $3-V$ source in terms of I as $I-2$ as shown in Fig. Next apply Ohm's law to all resistors (in terms of I) then apply KVL around the outside loop for which we know the voltages across all elements. This yields:
$-3 V=2(I-2)+2 I+2 I$
Solving yields:
$I=\frac{7}{6} A$
Apply KVL we obtain V:
$\mathbf{V}=2 I+2 I$
$\mathbf{V}=3 V-2(I-2)$
$\mathbf{V}=\frac{14}{3} V$

