EE 204
 Lecture 04
 Circuit Elements and Ohm's Law

Ohm's law:

The voltage $v(t)$ and the current $i(t)$ in a resistor R are related by:
$v=i R$
The above relation is valid only if $i(t)$ enters the $(+)$ terminal and leaves the $(-)$ terminal.

Figure 5

If $i(t)$ enters the $(-)$ terminal and leaves the $(+)$ terminal, then Ohm's law must be changed to: $v=-i R$

Figure 6

The passive sign convention:

The use of the \pm signs in Ohm's law and the power expression is known as the passive sign convention.
$i(t)$ enters the $(+)$ terminal $\Rightarrow p=+i v \quad \& \quad v=+i R$
$i(t)$ enters the $(-)$ terminal $\Rightarrow p=-i v$ \& $v=-i R$

Example 3:
Calculate the unknown quantities in the following circuit.

Figure 7

Solution:

$v_{1}=+(6)(2)=12 \mathrm{~V}$
$v_{2}=-(6)(6)=-36 \mathrm{~V}$
$i_{3}=+(16) /(8)=2 \mathrm{~A}$
$R=-\left(v_{4}\right) / i_{3}=-(-32) /(2)=16 \Omega$

Ideal Voltage Source:

The symbol of an ideal voltage source is shown below. The value of the voltage source is V volts and the terminals " a " and " b " are used to connect the ideal voltage source to other circuit elements.

When any load is connected across the terminals of an ideal voltage source of voltage V , the same voltage V appears across the load, irrespective of the load. Note that the $(+)$ and $(-)$ polarities of the voltage V are on the same side.

Example 1: Various resistive loads are connected to the 5 V ideal voltage source as shown in figure 3. In each case, the voltage across the load is also 5 V . Note that the equivalent resistance of the resistive load shown in circuit (c) and circuit (d) is considered to be the load.

Figure 3 ($\mathrm{a}, \mathrm{b}, \mathrm{c} \& \mathrm{~d}$)

Example 2: Calculate the current I in the following circuit:

Figure 4

Solution: Using Ohm's law:
$I=V / R=4 / 8=0.5 A$

Figure 5
The following ideal voltage sources are equivalent. If you invert the algebraic sign of the voltage V , you must also reverse the voltage polarity. Otherwise, the sources are not equivalent.

Figure 6
Example 3: Is the actual polarity of terminal "a" positive or negative?

Figure 7
Solution: By inverting the sign of the ideal voltage source from -100 V to +100 V and reversing the polarity of the voltage, we conclude that the actual polarity of terminal "a" is (+) or positive polarity. This means that terminal " a " is actually at a higher potential than terminal " b ".

Figure 8

Ideal Current Source:

The symbol of an ideal current source is shown below. The value of the current source is I amperes and the terminals "a" and "b" are used to connect the ideal current source to other circuit elements.

Figure 9

When any load is connected across the terminals of an ideal current source of current I, the same current I flows through the load, irrespective of the load.

Figure 10

Example 3: The 3 A ideal current source shown below is connected to different resistive loads. In each case, the current that flows across the load is also 3 A . Note that in circuit (c), the current through the resistive load is 3 A , but the currents that flow into the individual resistances that make up the load are each less than 3 A .

Figure 11

Example 4: In the following circuit, calculate the voltage V across the 20Ω resistance.

Figure 12
Solution: Using Ohm's law:
$V=I R=0.5 \times 20=10 \mathrm{~V}$

Figure 13
The following two current sources are equivalent. If you invert the algebraic sign of the current I , you must also reverse the direction of current flow. Otherwise the two sources are not equivalent.

Figure 14

Example 5: What is the actual direction of the current in the 8Ω resistor?

Figure 15

Solution: As shown in the diagram below, the actual current flow through the 8Ω resistance is from terminal "a" down to terminal "b".

Figure 16

The short and the open circuits:

When a resistor has a zero resistance (i.e. $R=0 \Omega$), we call it a short circuit.
When a resistor has an infinite resistance (i.e. $R=\infty$), we call it an open circuit.
The symbols of the short and the open circuits are respectively shown in figures (a) and (b) below:

(b)

Figure 17

The current through a short circuit is generally not equal to zero. However, the voltage across a short circuit is always equal to zero, because:
$V=I R=0 R=0$

The voltage across an open circuit is generally not equal to zero. However, the current through an open circuit is always equal to zero, because:
$I=V / R=V / \infty=0$

When the 10 V ideal voltage source is connected to a short circuit as shown below, we immediately face a problem. What is the voltage across the load in this case?

Is the voltage V across the load 10 V or 0 V ?
In order to avoid this ambiguous question, which cannot be answered it illegal in this course to connect a short circuit across the terminals of an ideal voltage source. However, as we will see later in the course, we are allowed to connect a short circuit across the terminals of a realistic voltage source.

Figure 18
The same type of problem faces us, when we connect the 5 A current source to an open circuit load, as shown in the figure below.

What the current I through the load in this case? Is it 5 A or 0 A ?
There is no answer to this question also. Thus, it is also illegal in this course to connect an open circuit to the terminals of an ideal current source.

Figure 19
How many illegal circuits do we have in this class?

