EE204

Lecture 02

Kirchhoff's Current and Voltage Laws

Kirchoff's Current Law (KCL).

The sum of currents *entering* a node is equal to the sum of currents *leaving* that node.

$$i_1 + i_4 = i_2 + i_3 + i_5$$

Equivalent statement of KCL:

The algebraic sum of currents entering a node is equal to zero.

$$i_1 - i_2 - i_3 + i_4 - i_5 = 0$$

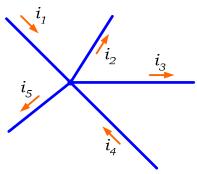
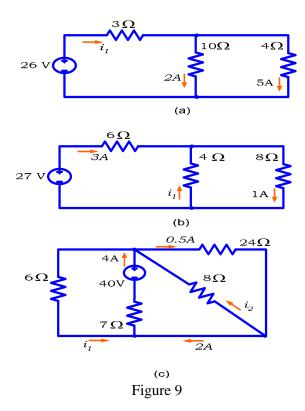


Figure 8

Example 4:

Calculate the unknown currents in the following circuits.



Solution:

a) KCL at node (a)
$$\Rightarrow$$
 $i_1 = 2 + 4 = 6A$

b) KCL at node (a)
$$\Rightarrow$$
 3+ i_1 = 1 \Rightarrow i_1 = -2A

Alternatively

KCL at node (a)
$$\Rightarrow 3+i_1-1=0 \Rightarrow i_1=-2A$$

c) KCL at node (b)
$$\Rightarrow i_1 - 4 + 2 = 0 \Rightarrow i_1 = 2A$$

KCL at node (c)
$$\Rightarrow$$
 0.5 - i_2 - 2 = 0 \Rightarrow i_2 = -1.5A

Check KCL at node (a)
$$\Rightarrow$$
 $-i_1 + 4 + i_2 - 0.5 = -(2) + 4 + (-1.5) - 0.5 = -4 + 4 = 0$

KCL is also applicable to a *closed* area (super node).

The algebraic sum of currents entering a super node is equal to zero.

$$i_1 + i_2 - i_3 + i_4 - i_5 = 0$$

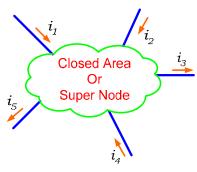
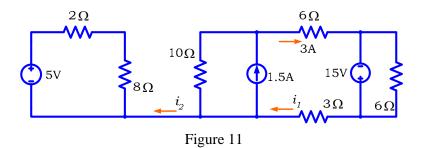


Figure 10

Example:

Calculate the currents i_1 and i_2 in the circuit shown below:



Solution:

KCL at super node 1
$$\Rightarrow$$
 3- $i_1 = 0$ \Rightarrow $i_1 = 3A$

KCL at super node 2
$$\Rightarrow$$
 $i_2 = 0$ \Rightarrow $i_2 = 0A$

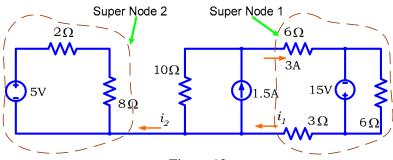


Figure 12

Kirchoff's Voltage Law (KVL):

The algebraic sum of voltages around any closed circuit is equal to zero.

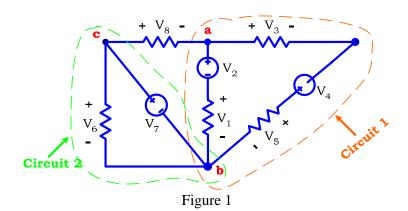
KVL around circuit 1 (CW)
$$\Rightarrow$$
 $-v_1 - v_2 + v_3 - v_4 + v_5 = 0$ (1)

KVL around circuit 1 (CCW)
$$\Rightarrow$$
 $+v_1+v_2-v_3+v_4-v_5=0$ (2) [same as (1)]

CW = clockwise & CCW = counterclockwise

KVL around the outer circuit (CW)
$$\Rightarrow -v_6 + v_8 + v_3 - v_4 + v_5 = 0$$
 (3)

KVL around circuit 2 (CW)
$$\Rightarrow$$
 $-v_6 + v_7 = 0 \Rightarrow v_6 = v_7$ (parallel elements)



Alternative KVL Statement:

The *algebraic* sum of voltages between two nodes is *independent* of the path taken from the first node to the second node.

KVL Node
$$a \xrightarrow{path1&2} Node b \Rightarrow +v_2 + v_1 = +v_3 - v_4 + v_5$$
 (4) [same as (1)]

KVL Node
$$a \xrightarrow{path2\&3} Node b \Rightarrow +v_3 - v_4 + v_5 = -v_8 + v_6$$
 (5) [same as (3)]

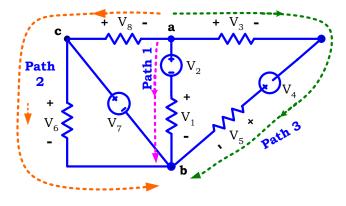
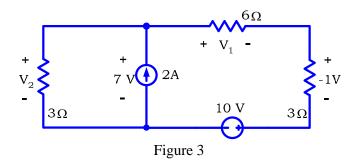


Figure 2

Example:

Calculate the unknown voltages in the given circuit.



Solution:

Applying KVL:

Right-hand circuit (CW)
$$\Rightarrow$$
 $-(7) + v_1 + (-1) + 10 = 0$ \Rightarrow $v_1 = -2V$

Right-hand circuit (CCW)
$$\Rightarrow$$
 +(7) -(10) -(-1) - $v_1 = 0$ \Rightarrow $v_1 = -2V$

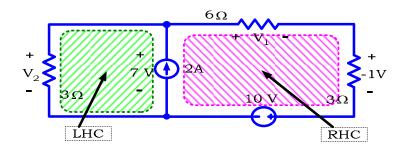
Node a
$$\longrightarrow$$
 Node b \Rightarrow $+v_1 = +(7) - (10) - (-1)$ \Rightarrow $v_1 = -2V$

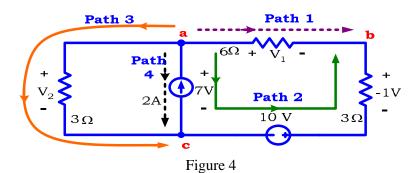
Same answer in all cases.

Left-hand circuit (CW)
$$\Rightarrow$$
 +(7)-(v_2) = 0 \Rightarrow v_2 = 7V

Node a
$$\xrightarrow{path3\&4}$$
 Node c \Rightarrow $+v_2 = +7$ \Rightarrow $v_2 = 7V$

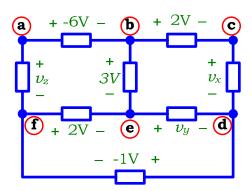
Same answer in both cases.





Example: (KVL)

Determine voltages $v_x,\,v_y,\,v_z$ in the circuit of fig....by applying KVL.



Solution:

KVL around the loop abcfa

$$-v_z + (-6) + 3 - 2 = 0$$

$$\Rightarrow v_z = -6 - 2 + 3 = -5V$$
(1)

KVL around the loop fedef $2 + v_y + (-1) = 0$ $\Rightarrow v_y = -2 + 1 = -1V$ (2) KVL around the loop bcdeb

$$-3 + 2 + v_x - v_y = 0 (3)$$

To get vx we can substitute v_y from (2) into (3) to get:

$$v_x = +3 - 2 + v_y = 1 + (-1) = 0$$

$$\Rightarrow v_x = 0V$$

Note: We can also apply KVL around the loop febcdf to get v_x directly:

$$2-3+2+v_x+(-1)=0$$

$$\Rightarrow v_x = -2 + 3 - 2 + 1 = 0V$$