King Fahd University Of Petroleum & Minerals Department of Electrical Engineering EE-204 Fundamentals of Electric Circuits

2018 Second Semester (172)

INSTRUCTOR	OFFICE	Sections	PHONE	E-MAIL	OFFICE HOURS
Dr. Samir H. Abdul-Jauwad	59-1070	3&4	860-2337	samara@kfupm.edu.sa	Sunday, Tuesday 10:00-12:00

Basic laws: Ohm's law, KVL, KCL. Resistive networks. Circuit analysis techniques: node-voltage and mesh-current. Network theorems. Inductance and capacitance. Sinusoidal analysis and phasor methods. Power concepts of AC circuits. Polyphase circuits.

Prerequisites: MATH 102 and PHYS 102

Textbook: Clayton Paul, FUNDAMENTALS OF ELECTRIC CIRCUIT ANALYSIS, Wiley & Sons. Inc., 2001.

Tentative Schedule:

	Week Topic		<u>Reading</u> Assignment	Laboratory [*]		
<u>1</u>	21-25 Jan	Introduction, Basic Definitions, KCL, KVL	1.2 – 1.6	No meeting		
<u>2</u>	28 Jan-1 Feb	Conservation of power, Series & Parallel Connection of Elements, Ohm's Law	1.7 - 1.8, 2.1 - 2.3	Exp #1: Lab Safety rules and Introduction to Multisim		
<u>3</u>	4 - 8 Feb	Resistors in Series and in Parallel, Voltage and Current Division	2.4 - 2.6	Exp #2 Resistors and Ohm's Law		
<u>4</u>	11 -15 Feb	Source Transformation, Principle of Superposition	2.7, 3.1	Exp #3: Kirchhoff's Laws		
5	18-22 Feb	Thevenin's Theorem, Norton Theorem	3.2 - 3.3	No meeting		
Fir	First Major Exam: Wednesday 21 Feb, 2018 (90 minutes) selected between 6:00PM-7:30PM tentative time. (1.2-2.7)					
<u>6</u>	25 Feb-1 Mar	Maximum Power Transfer, Node Voltage Method	3.4 - 3.5	Exp #4: Current & Voltage Divider Rules		
7	4 –8 Mar	Node Voltage Method, Mesh Current Method	3.5 (Cont.)- 3.6	Exp#5 Superposition		
<u>8</u>	11 -15 Mar	Capacitors, Inductors, Series and Parallel Connections	5.1 – 5.2, 5.4	Exp #6: Thevenin's / Norton's Theorems & Maximum Power Transfer		
<u>9</u>	18-22 Mar	Sinusoidal Source, Complex Numbers, Frequency Domain (Phasor) Circuit.	6.1 - 6.3	Exp # 7: The Oscilloscope and Function Generator		
10	25-29 Mar	Frequency Domain Analysis	6.4 - 6.5	Experimental Test		
<u>11</u>	1 -5 Apr	Power Concepts	6.6	No meeting		
Sec	Second Major Exam: Sunday 1 st April, 2018 (90 minutes) selected between 6:30PM-8:00PM tentative time, (3.1-5.4)					
12	8 -12 Apr	Average Power	6.6	Exp #8: Frequency Domain Analysis		
13	15-19 Apr	Power Factor, RMS Values	6.6	Exp #9: Maximum Power Transfer		
<u>14</u>	22-26 Apr	Commercial Power Distribution, Three Phase Circuits	6.9	Exp #10: Average and RMS Values		
<u>15</u>	29 Apr-3 May	Review	6.9	Final Lab Exam		

Final Exam: Comprehensive

Grade Distribution (Exams may and can be all multiple choice type):

Class work**	Major I***	Major II***	Laboratory	Final Exam
15%	20%	20%	20%	25%

Course Outcomes

Upon the successful completion of this course, you should be able to

- 1. Apply knowledge of mathematics, science, and engineering to the analysis and design of electric circuits.
- 2. Identify, formulate, and solve engineering problems in the area of circuits.
- 3. Use the techniques, skills, and modern programming tools such as PSPICE, necessary for engineering practice.
- 4. Participate and function within multi-disciplinary teams.

Practice problems(not to be submitted):

PP # 1	Ch. 1:	1.3-1, 1.4-5, 1.5-5, 1.6-2, 1.6-6, 1.7-2, 1.8-2
PP # 2	Ch. 2:	2.2-5, 2.2-7, 2.3-2, 2.3-8, 2.4-3, 2.4-10, 2.5-7, 2.5-11
PP # 3	Ch. 2:	Ch.2: 2.6-4, 2.7-3, 2.7-5,
PP # 4	Ch. 3:	3.2-6, 3.2-12, 3.3-2, 3.3-4, 3.3-6, 3.3-12
PP # 5	Ch. 3:	3.5-2, 3.5-7, 3.6-2, 3.6-7
PP # 6	Ch. 5:	5.1-3, 5.1-6, 5.1-8, 5.2-3, 5.2-6, 5.2-8, 5.4-2
PP # 7	Ch. 6:	6.1-1(b,f), 6.1-2(a,f,g), 6.2-1(d,f), 6.2-5(b,d)
PP # 8	Ch. 6:	6.3-4, 6.3-7, 6.4-4, 6.4-7, 6.4-12
PP # 9	Ch. 6:	6.4-16, 6.4-17, 6.5-1, 6.5-4, 6.5-8
PP # 10	Ch. 6:	6.6-1, 6.6-5, 6.6-14, 6.6-17, 6.6-21, 6.9-4

Important Points to Remember

- Attendance: Deduction of 1/3 points from the class work before averaging for any absence. According to the university regulations, any student that exceeds 20% (<u>6 lectures</u>) of the scheduled class meeting without an official excuse or more than 1/3 absences with official excuses is considered DN (<u>DN can be given for lab absences as posted in the lab syllabus</u>). A grade DN will be given if minimum attendance is not met as stated in the undergraduate bulletin.
- 2. Official excuses: Only official excuses obtained from the Students Affairs are accepted (if submitted within a week of the absence). Personal excuses are not accepted.
- 3. <u>No make-up</u> will be provided for quizzes/homework. If an official excuse (that specifically includes exam) exists, then the student will be given the average of his marks in his quizzes/homework.
- Mobiles are <u>not allowed</u> during exams or quizzes. BRING YOUR OWN CALCULATOR DURING EXAMS AND QUIZZES (NO MOBILES).
- 5. NO FOOD OR DRINKS IN THE CLASS ROOM.