

Ministry of Higher Education

King July University of Petroleum & Minerals

Electrical Engineering Department

وزارة التمتيم المكاني جامعة الملك فهد البنرواء و المعادن قسم الهندسة الكهربائية

EE 203: Electronics I

Instructors:

Dr. Hassan Ragheb (sections 1&5)

Dr. Essam Hassan (sections 4)

Dr. Saad Al-Sharani (sections 3)

Examination: First Major Exam

Date: October 6, 2013

Time: 5:45-7:15 PM

Student Name: Key
Student Number:
Section Number:

Problem 1	
Problem 2	
Problem 3	
Total	

Answer All Questions

Problem (1-A) [points 7]

For the op amp circuit shown below, find the value of the current I in terms of v_1

Problem (1-B) [points 8]

Design the circuit shown in Fig. 1-b to have an input resistance of $100\,k\Omega$ and gain that can be varied from -1 V/V to -10 V/V using 10- $k\Omega$ potentiometer R_4 (R_4 can vary from 0 to $10\,k\Omega$). What voltage gain results when the potentiometer is set exactly at its middle value. (ideal op-amp)

Input resistance =
$$R_1 = look N$$
 $KCL \text{ at } \square$
 V_1
 $R_1 + \frac{V_x}{R_2} = 0$
 $V_x = -\frac{R_2}{R_1} V_1$
 V_1
 V_2
 V_3
 V_4
 V_5
 V_6
 V_8
 V_9
 $V_$

Problem (2-A) [5 points]

Analyze the diode circuit shown to determine the currents and voltage listed below, assuming constant voltage drop model diode with $V_{Do} = 0.7 \text{ V}$ (show your analysis):

I ₁ (mA)	1.07 (13)	
I ₂ (mA)	1.72	
V _A (V)	-1.40 2	
Assume both diodes are on VA = -1.4 V		
$I_1 = \frac{10 + 0.7}{10} = 1.07 \text{ mA}$		
T 5-1.4-	(-10) = 1.72 mA	

Problem (2-B) [5 points]

A shunt regulator utilizing a zener diode with an incremental resistance of 20 Ω is fed through a 480 Ω resistor; the supply voltage varies by as much as 20% of its nominal values.

- 1. Find the line regulation.
- 2. Draw this regulator circuit including the load which can be represented by a resistor R_L.

1.
$$\frac{\Delta V_{o}}{\Delta V_{s}} = \frac{r_{z}}{r_{z} + R} = \frac{26}{20 + 480} = 0.04$$

2. $\frac{R}{V_{s}} = \frac{R}{V_{z}} = \frac{2^{1}}{R}$

Problem (2-C) [5 points]

Sketch the transfer characteristics of the circuit shown assume ideal diodes,

Problem (3) [points 15]

The power supply circuit shown in Fig. 3.1 uses a full wave rectifier to obtain 18 V DC.

- i- Sketch v_o before the capacitor is connected indicating the significant points.
- ii- Find the ripple voltage.
- iii- Find the value of the smoothing capacitor C.
- iv- Find the value of the PIV across each diode.

