بش_____ إِلَيْهِ الرَّجْيِ الرَّجْيِ الرَّحِيْ مِ

Ministry of Higher Education King Jahd University of Petroleum & Minerals

Electrical Engineering Department

وزارة التعنيم العالي جامعة الملك فهد للبنروك و المعادن قسم الهندسة الكهربائية

EE 203: Electronics I

Instructors : Dr. H. Al-Zaher (sections 1.5)

Dr. O. Hammi (sections 7)

Dr. M. Al-Gahtani (sections 3, 6)

Mr. N. Tasadduq (sections 4)

Dr. H. Ragheb (sections 8)

Examination: First Major Exam

Date : March 2, 2013

Time: 6:15-7:45 PM

 Student Name:

 Student Number:

 Section Number:

Problem 1	20	
Problem 2	15	
Problem 3	15	
Problem 4	10	
Total	60	

Answer All Questions

Problem (1) [20 points]

A. For the op amp circuit shown below, write an expression for $V_{\rm o}$ in terms of the two inputs V_1 and $V_2.$

B. The op amp circuit, shown below, uses an op amp with finite gain A. Find $\frac{V_{0.000}}{V_{0.000}}$.

Problem (2) [15 points]

Consider the circuit in the figure below where both diodes have a constant voltage drop model with $V_D = 0.7$ V.

- 1. Find the output voltage for $V_{in} = +3 \text{ V}$. (verify your assumptions about the diodes operating mode)
- 2. Find the output voltage for $V_{in} = -3 \text{ V}$. (verify your assumptions about the diodes operating mode)
- 3. Find the expressions of the output voltage (V_{out}) when the input voltage V_{in} varies from +3 V to -3 V. Draw the voltage transfer characteristics of the circuit. (clearly show all key values)
- 4. If V_{in} is a sinusoidal voltage with a maximum value of +3 V, draw the voltage V_{out} versus time over two periods of V_{in} . (Clearly show all key values)

Problem (3) [15 points]

The power supply shown below is required to deliver a 12 V DC to a load of $R_L = 1 k\Omega$ with a ripple voltage of $\pm 0.3 V$. C is a smoothing capacitor used in parallel with the load resistance. In addition each diode used can be a constant voltage drop model with $V_D = 0.7 V$. The center tap-transformer has turns ration *n*:1 find:

- a- The peak voltage across each secondary side of the transformer (V'_m) .
- b- The value of *n*
- c- The value of C
- d- Different than increasing C, how can the ripple be reduced? Draw the complete circuit.

Problem (4) [10 points]

The Zener in the circuit shown below has a fixed voltage drop of 18 volt across it as long as i_z is maintained between 20 mA and 200 mA.

- a- Find R so that V_L remains at 18 volt while V_S is free to vary from 24V to 28V.
- b- Using R of part a, find the maximum Zener current.

