Ministry of Higher Education King Jah University of Petroleum & Minerals Electrical Engineering Department

وزارة التعتام المتايا جامعة الملك فحهد للبنروك و المعادن قسم الهندسة الكهربائية

EE 203: Electronics I

Instructors: Dr. H. Al-Zaher (sections 1, 5) Dr. M. Al-Gahtani (sections 3, 6) Mr. N. Tasadduq (sections 4) Dr. O. Hammi (sections 7) Dr. H. Ragheb (sections 8)

Date : May 19, 2013

Time: 8:00-10:30 AM

Student Name:	
Student Number:	
Section Number:	

Problem 1	20	
Problem 2	20	
Problem 3	20	
Problem 4	20	
Problem 5	20	
Total	100	

Answer all questions showing all steps. More than one answer for the same problem are given zero mark.

Problem (1) [20 points]

Part 1: Select the correct answer in the following multiple choice questions (MCQs) [1 Mark each].

MCQ 1:

Compared to the inverting op-amp, the main advantage of the non-inverting op-amp shown in the circuit below is: R_2

- A. its high output impedance.
- B. its high input impedance.
- C. its low output impedance.
- D. its positive gain.

MCQ 2:

The instrumentation amplifier is a high performance version of:

- A. The inverting amplifier.
- B. The non-inverting amplifier.
- C. The difference amplifier.
- D. The weighted summer amplifier.

<u>MCQ 3:</u>

Peak inverse voltage for a diode is

- A. Maximum voltage across the diode working in forward direction.
- B. Maximum voltage across the diode working in the reverse direction.
- C. Minimum voltage across the diode working in the reverse direction.
- D. None of the above.

MCQ 4:

The BJT can be used as an amplifier if:

- A. The EB junction is reverse biased and CB junction is forward biased.
- B. The EB junction is forward biased and CB junction is reverse biased.
- C. The EB junction is forward biased and CB junction is forward biased.
- D. The EB junction is reverse biased and CB junction is reverse biased.

<u>MCQ 5:</u>

Which of the following amplifier configurations has high input resistance and low output resistance ?

- A. Common Emitter amplifier.
- B. Common Emitter amplifier with R_s.
- C. Common base amplifier.
- D. Common collector amplifier.

<u>MCQ 6:</u>

Which of the following relation is correct for BJT in saturation mode?

- A. Ic = βI_B
- B. Ic $<\beta I_B$
- C. Ic > βI_B
- D. β Ic < I_B

<u>MCQ 7:</u>

The sizes of PMOS transistors with input A and B in terms of the size of PMOS transistor of the basic inverter **p** are:

- A. $M_A=1\mathbf{p}, M_B=1\mathbf{p}$
- B. $M_A=1\mathbf{p}, M_B=2\mathbf{p}$
- C. $M_A=2p, M_B=1p$
- D. $M_A=2p, M_B=2p$

<u>MCQ 8:</u>

When the MOSFET operates in triode region it has a resistance r_{DS} which is:

- A. Proportional to (W/L).
- B. Proportional to 1/(W/L).
- C. Proportional to $(W/L)^2$.
- D. Proportional to $1/(W/L)^2$.

<u>MCQ 9:</u>

Biasing the MOSFET as shown in the figure will place the transistor in:

- A. In the border between saturation (pinch-off) and triode regions.
- B. In the saturation (pinch-off) region when R_D is greater than R_G .
- C. In the saturation (pinch-off) region when V_{DD} is greater than V_t .
- D. In the saturation (pinch-off) region when R_D is less than R_G .

Part 2: Fill in the blank (FIB) with correct values:

FIB 1 [4 Marks]:

The transistor in the circuit below has β =100, V_{EB} (on) = 0.7V and V_{ES (sat)} = 0.2V. Given that

the transistor is working in saturation, then the collector voltage V_C =

FIB 2 [4 Marks]:

The input resistance of the amplifier is given by R_{in} =.....

FIB 3 [3 Marks]:

The VTC of an inverter is shown below, determine corresponding

- V_{OH} =.....V
- V_{OL} =V
- V_{IL} =.....V
- $V_{IH} = \dots V$
- V_{NMH} =V
- V_{NML} =V

Problem (2) [20 points]

A. For the ideal op-amp circuit show in the figure, Find the expression of the output voltage v_o as a function of the input voltages v_{gI} and v_{g2} .

B. For the circuit shown below, assume that the zener diode has Vz=3.3V and $rz=0\Omega$ when reverse biased, and has a 0.7V drop when forward biased. Fill the following table for values of Vo for different values of input voltage Vi.

Vi	Vo
-8V	
0V	
8V	

The CMOS in the amplifier circuit shown below has $V_t = 1.5 \text{ volt}$, $k'_n \frac{W}{L} = 2 \text{ mA}/V^2$. The current $I_D = 0.81 \text{ mA}$ and $R_D = R_L = R_s = 2 \text{ k}\Omega$. Neglecting the output resistance r_o of the transistor, determine:

- (a) DC biasing voltages (V_{GS} , V_{DS}).
- (b) Draw the small signal equivalent circuit.
- (c) The input resistance R_{in} .
- (d) The voltage gain v_o / v_{sig} .
- (e) The output resistance R_o .

Problem (4) [20 points]

Consider the circuit shown below, with the BJT transistor operating in active region. Select the value of the DC current 'I' and the value of the resistor ' $\mathbf{R}_{\mathbf{C}}$ ' such that:

$$R_{in} = 5k\Omega, \ \frac{v_{out}}{v_{sig}} = -75 \ \frac{v}{v},$$

Neglect r_o and assume $\beta = 100, R_{sig} = 1k\Omega$ and $V_{CC} = V_{EE} = 5V.$

Problem (5) [20 points]

- 1. In addition to Fan-In and Fan-Out, list another four of the main design parameters of logic gates.
 - (i) (ii) (iii)
 - (iv)
- 2. Determine the logic function Y realized by the given logic gate.

3. Design a CMOS logic gate with minimum number of transistors to implement the function X. Then expand the design to implement the logic function Y with minimum number of transistors as well.

Design a 2 by 1 multiplexer using pass transistor logic (Transmission gates) that selects one of four inputs from A and B depending on the selection bit S1.
Draw the complete circuits shown all transistors including the inverter.