

King Fahd University of Petroleum & Minerals Electrical Engineering Department Winter 2012 (112)

EE 203 – Final Exam Tuesday, May 22, 2012 7:30-10:30 AM

Name					
ID					
	Dr. M. Al-	Dr. H. Al-	Dr. O.	Dr. W.	Dr. H.
	Gahtani	Zaher	Hammi	Mesbah	Ragheb
Section	3 and 6	5	1, 4 and 8	7	2

	Grade	
Part		
Dort D	Problem 1 (14 points)	
(42 points)	Problem 2 (14 points)	
	Problem 3 (14 points)	
Tota		

Note: Part 1 is made of multiple choices questions, only one answer is correct. Clearly fill the box beside the right answer (■). Unclear or multiple answers will be considered as wrong.

Part A: Multiple Choices Questions

[2 points each]

In each of the questions below, clearly fill the box beside the correct answer.

Question 1:

For the OPAMP circuit shown below, where $R_1 = 2 k\Omega$, $R_2 = R_3 = R_4 = 1 k\Omega$ and $R_a = 2 k\Omega$ and $R_b = 3 k\Omega$. The output voltage V_o is given by:

- $\Box V_{o} = 3V_{1} + 6V_{2} 3V_{3} .$
- $\Box V_{o} = 6V_{1} 6V_{2} 3V_{3}$.
- $\Box V_{o} = 3V_{1} + 6V_{2} + 3V_{3} .$
- $\Box V_o = 3V_1 6V_2 + 3V_3$.

Question 2:

The voltage drop across a reverse biased diode is about:

□ 0.0 V

□ 0.2 V

□ 0.7 V

 \Box unknown

Question 3:

In a forward biased pn junction:

 \Box The electrons flow from the p side to the n side.

 \Box The electrons flow from the n side to the p side.

 \Box The electrons remain in the n region.

 \Box The electrons remain in the p region.

Question 4:

The voltage regulator shown in the figure below, uses a Zener diode having a resistance $r_z=2\Omega$, Find the change in the output voltage (V_o) when the input voltage (V⁺) changes by 1.3V.

 $\Box \Delta V_o = 1.2 \text{ mV}$

 $\Box \Delta V_o = 102 \text{ mV}$

$$\Box \Delta V_o = 65 \text{ mV}$$

 $\Box \Delta V_o = 110 \text{ mV}$

Question 5:

The circuit shown in the figure below has an ideal opamp and an ideal diode. If a sinusoidal input voltage source is applied, the circuit will work as:

\Box Half wave rectifier.

 \Box Full wave rectifier.

□ Inverting amplifier.

□ Difference amplifier.

Question 6:

For the MOS circuit shown below, the two transistors are identical and have the following parameters: $V_t = 1V$, $k'_n \frac{W}{L} = 2 \text{ mA/V}^2$, and $\lambda = 0$. The voltage V₁ and the current I₁ are: $\Box V_1 = 1.5 \text{ V}$ and $I_1 = 250 \ \mu\text{A}$. $\Box V_1 = 1.2 \text{ V}$ and $I_1 = 40 \ \mu\text{A}$. $\Box V_1 = 3 \text{ V}$ and $I_1 = 0 \ \mu\text{A}$. $\Box V_1 = -1.5 \text{ V}$ and $I_1 = 200 \ \mu\text{A}$.

Question 7:

The MOSFET can be used as a constant current source when it operates in:

 \Box The pinch-off (saturation) region.

 \Box The linear region.

 \Box The triode region.

 \Box The cut-off region.

Question 8:

The phase shift between the input and output signals in common-emitter amplifiers is:

 $\Box 0^{\circ}$.

- \Box 90°.
- \Box 180°.

 \Box 270°.

Question 9:

A receiver requires an output amplifier stage having high input resistance and low output resistance. Which of the following amplifier configurations can be used?

□ Common source amplifier.

 \Box Common source amplifier with R_s.

□ Common gate amplifier.

□ Common drain amplifier.

Question 10:

The BJT can be used as an amplifier if:

□ The EB junction is reverse biased and CB junction is forward biased.

□ The EB junction is forward biased and CB junction is reverse biased.

□ The EB junction is forward biased and CB junction is forward biased.

□ The EB junction is reverse biased and CB junction is reverse biased.

Question 11:

Question 12:

MOSFET in digital circuits mostly work in:

 \Box Triode and pinch off (saturation) region.

 \Box Triode and cut off region.

 \Box Cut off and pinch off (saturation) region.

 \Box Active and pinch off (saturation) region.

Question 13:

In CMOS logic circuits, V_{IL} is defined as:

 \Box The maximum input voltage that can be considered as high input.

 \Box The minimum input voltage that can be considered as low input.

 \Box The maximum input voltage that can be considered as low input.

 \Box The minimum input voltage that can be considered as high input.

Question 14:

For the circuit shown in the figure below, the output Y is given by:

 $\Box Y = A \cdot (B + C)$ $\Box Y = \overline{A} \cdot (\overline{B} + \overline{C})$ $\Box Y = \overline{A} + (\overline{B} \cdot \overline{C})$ $\Box \overline{Y} = \overline{A} \cdot (\overline{B} + \overline{C})$

Part B: Problems

Problem 1:

[14points]

Given a MOSFET with the following parameters, $V_t = 2V$, $k'_n \frac{W}{L} = 5 \text{ mA/V}^2$, and $\lambda = 0$ (no channel length modulation effect), the available DC voltage source is $V_{DD} = 15V$. It is required to design the common source amplifier shown in the figure below. The biasing point is set to $V_{DS} = \frac{V_{DD}}{2}$ and $I_D = 2.5 \text{ mA}$. The amplifier also must provide a voltage gain $\frac{V_o}{V_{sig}} = -10 \text{ V/V}$.

Find the values of the resistors R_D , R_s and R_2 .

Problem 2:

[14 points]

The transistor in the circuit below is biased in the active region and has V_{BE} =0.7V, and β =100. Neglect the effect of Early voltage.

- 1. Calculate the value of the input resistance R_{in} .
- 2. Calculate the value of the output resistance R_{out} .
- What is the value of the gain (v_o/v_{sig})?
 Suggest a way to increase the gain (no need for calculations).

Problem 3:

[14 points]

[6 points]

- Problem 3 A:
 [6]

 1. Which logic gate has the voltage transfer characteristic shown below?

 - Clearly label V_{OL}, V_{OH}, V_{IL}, and V_{IH} in the figure.
 Express the noise magins as a function of the voltages V_{OL}, V_{OH}, V_{IL}, and V_{IH}?

Problem 3 - B:

[6 points]

- 1. Sketch the complete CMOS logic circuit using **minimum number of transistors** that realize the function below. (Assume that the available inputs are A, B and C). $Y = \overline{\overline{B} + A \cdot C}$
- 2. What is total number of transistors needed?
- 3. Find the transistor sizing for the circuit of question 1 in terms of the size of the inverter's transistors.

Problem 3 – C:

[2 points]

1. Draw the **complete circuit (transistors)** using pass transistor logic (transmission gate) to realize the following function:

 $M = CA + \overline{C}B$