# **King Fahd University of Petroleum & Minerals**

#### Electrical Engineering Department EE 204 Fundamentals of Electric Circuits First Semester (111)

## Exam I Wednesday, 12 October 2011 6:00 PM – 7:30 PM

| Name:    |  |  |  |
|----------|--|--|--|
| ID:      |  |  |  |
| Section: |  |  |  |

#### **Instructors**

Dr. S. AL-AHMADI

Dr. M BIN SAEED

Dr. A. YAMANI

Dr. Z. AL-AKHDAR

Mr. T NOMAN

Dr. M MOHANDES

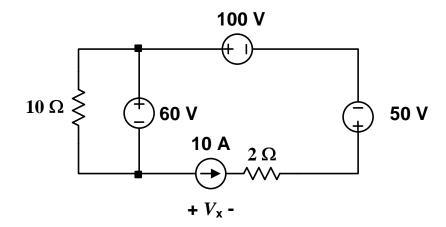
Dr. O. HAMMI

| Problem | Score | Out of |
|---------|-------|--------|
| 1       |       | 10     |
| 2       |       | 10     |
| 3       |       | 10     |
| Total   |       | 30     |

Good Luck!!

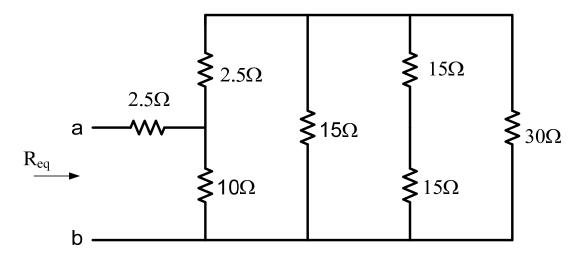
#### Problem 1

For the circuit shown,


- a) (5pts.) Determine the voltage Vx.
- b) (4pts) Calculate the power absorbed by the 60V voltage source.
- c) (1pt.) Is the 50V voltage source supplying or absorbing power?

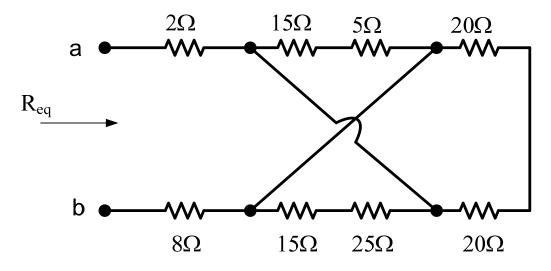
| a) | Vx =        |
|----|-------------|
| b) | $P_{60V} =$ |

c) The 50V voltage source is: (circle the correct answer)


supplying

absorbing



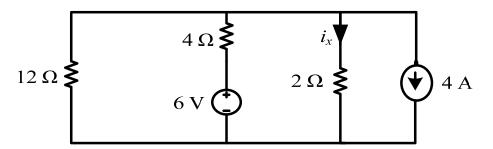

# Problem 2

a) (5 pts.) For the circuit shown below, determine the equivalent resistance  $R_{\text{eq}}\,$  between the terminals a and b.



| $R_{ m eq} =$ |
|---------------|
|---------------|

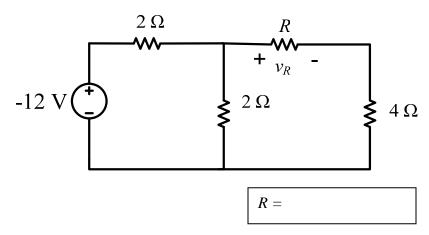
b) (5 pts.) For the circuit shown below, determine the equivalent resistance  $R_{\text{eq}}$  between the terminals a and b.




 $R_{\rm eq} =$ 

## Problem 3

a)


- 1. (2 pts.) Use **source transformation** to reduce the circuit shown to a single-node pair circuit, then
- 2. (2 pts.) use **current division rule (CDR)** in the circuit obtained in part (1) to determine the current  $i_x$ .



 $i_{\mathrm{x}} =$ 

b)

- 1. (3 pts.) Use **source transformations** to reduce the circuit shown to a single loop circuit, then
- 2. (3 pts.) use **voltage division rule (VDR)** in the circuit obtained in part (1) to determine the value of the resistor R such that  $v_R = -4 \text{ V}$ .

