

King Fahd University of Petroleum & Minerals Department of Electrical Engineering

EE 204 Fundamentals of Electric Circuits First Semester (111) Final Exam Date: 11 January 2012 Time: 7:00PM – 9:30PM Location: Exb Center-B

Name:	

ID: _____

Section:

Serial Number

Instructors Dr. S. AL-AHMADI Dr. M BIN SAEED Dr. A. YAMANI Dr. Z. AL-AKHDAR Mr. T NOMAN Dr. M MOHANDES Dr. O. HAMMI

Section						
1 & 9						
2						
3 & 6						
4 & 5						
7						
8						
10						

Prob.	Score	Out of
1		10
2-a		5
2-ь		5
3		10
4		10

Prob.	Score	Out of
5		10
6		10
7		10
Total		70

Problem 1: (CLEARLY CIRCLE THE BEST ANSWER. NO CREDIT FOR MULTIPLE ANSWERS.)

2. Two resistances R1 and R2 give combined resistance of 4.5 ohms when in series and 1 ohm when in parallel. The resistances are

- (A) 3 Ω and 6 Ω
 (B) 3 Ω and 9 Ω
 (C) 1.5 Ω and 3 Ω
 (D) 1.5 Ω and 0.5 Ω
- (E) 4.5 Ω and 1 Ω

3. When P = Power, V = Voltage, I = Current, R = Resistance and G = Conductance, which of the following relation is <u>NOT correct</u>?

(A)
$$V = \sqrt{PR}$$

(B) $P = V^2 G$
(C) $G = \frac{P}{I^2}$
(D) $I = \sqrt{P/R}$
(E) $P = VI$

4. Determine the complex impedance of the following series arrangement at a frequency of 60 Hz. (A) $170 + j69 \Omega$

(E) 69 +j170 Ω

5. Which of the following combinations of components represents an impedance of 110 + j 314 at a frequency of 100 Hz?

(A) A resistor of 110 Ω in series with a capacitor of 5 F.

(B) An inductor of 50 mH in series with a capacitor of 5 F

(C) A resistor of 110 Ω in series with an inductor of 500 mH.

(D) A resistor of 314 Ω in series with an inductor of 5 mH.

(E) A resistor of 500 Ω in series with an inductor of 110 mH.

Problem 2

a) Given that $I_3 = -1$ A, <u>apply the mesh equation method to the circuit shown</u> to determine the power dissipated by the 4 Ω resistor.

b) In the circuit below, calculate the currents I_1 and I_2 using superposition technique.

<u>Problem 3:</u> In the circuit below, calculate the voltage v(t).

Problem 4:

a) The phasor current $I_a = 4 \angle 0^\circ$ A. <u>Use the current division rule</u> to find the current I_b .

b) In the circuit shown below, the sinusoidal voltage source $V_g = 40 \angle 45^\circ$ V. <u>Use the</u> <u>voltage division rule</u> to find the voltage V_R across the 10 Ω resistor.

Problem 5:

a) A load absorbs 30 Watts at a leading power factor (pf) of 0.6, calculate (include units):

- 1. The reactive power.
- 2. The complex power.
- 3. The apparent power.
- 4. What electric element would you use to improve the power factor? Explain?

b) The periodic voltage v(t) defined in a period as

$$v(t) = \begin{cases} 4, 0 \le t \le 1 \\ -4, 1 \le t \le 2 \end{cases}$$

is applied to a 4 Ω resistor. Calculate the average power absorbed by the resistor.

<u>Problem 6:</u> For the circuit shown determine the impedance Z_L that results in maximum average power transferred to Z_L .

$$Z_L =$$

Problem 7:

A balanced Y-connected source has phase voltage magnitudes of 220 Vrms. It is connected to a balanced Y-connected load. Each phase load impedance is $10+j10 \Omega$. Determine the total average power delivered to the load.

$\mathbf{P} =$		