

King Fahd University of Petroleum & Minerals Electrical Engineering Department Fall 2011 (111)

EE 203 – Exam II Wednesday, November 30, 2011 6:00-7:30 PM

Name	
ID	

	Dr. W. Mesbah	Dr. O. Hammi
Section	1 and 2	3 and 4

Problem	Grade
1 (20 points)	
2 (20 points)	
3 (20 points)	
Total (60 points)	

Question 1:

For the amplifier circuit shown in Figure 1, $R_{sig}=10k\Omega$, $R_{G}=100k\Omega$ and $R_{L}=1k\Omega$. The MOSFET transistor is biased to have $g_m=5mA/V$ and $r_0=16.5k\Omega$.

- a) Draw the small-signal equivalent circuit using the T-model of the transistor. [4 points]
- b) What is the output resistance of the amplifier? [4 points]
- c) Find the voltage gain A_v (= v_o/v_{in}) of this amplifier. [4 points]

d) What will the voltage gain become when the load resistance R_L is replaced by an open circuit? [4 points]

[4 points]

e) What is the overall voltage gain G_v (= v_o/v_{sig}) of the amplifier?

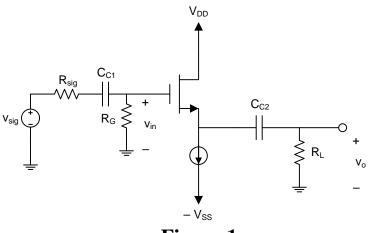
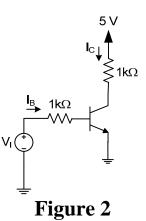
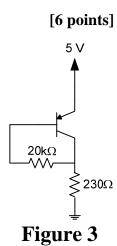



Figure 1

Question 2 – Part A:

For the circuit shown in Figure 2. The input voltage $V_I=5$ V. If needed, use the following: $\beta=100, |V_{BE}|=0.7$ V, and $|V_{CEsat}|=0.2$ V.

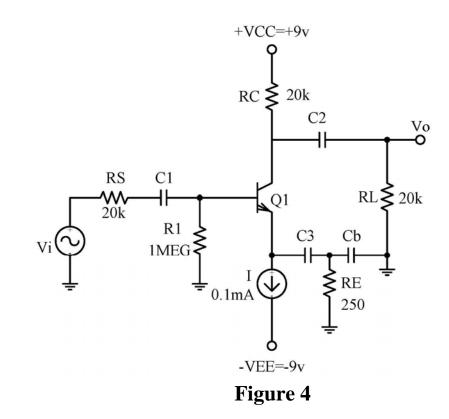
- a) Find the base and collector currents. [4 points]
- b) Find the base and collector voltages. [4 points]
- c) Verify any assumption made on the mode of operation of the transistor. [2 points]



Question 2 – Part B:

For the circuit shown in Figure 3, $V_B = 4.3$ V and $V_C = 2.3$ V. If needed, use the following:

 $\left|V_{\scriptscriptstyle BE}\right| = 0.7 \text{ V}$, and $\left|V_{\scriptscriptstyle CEsat}\right| = 0.2 \text{ V}$.


- a) What is the mode of operation of this transistor? Verify your answer. [4 points]
- b) Find the value of β .

Question 3:

For the circuit shown in Figure 4.The BJT transistor has β =100.

What is the type of the amplifier shown in Figure 4? [2 points] a) b) Draw the amplifier DC circuit. [3 points] Calculate the small-signal parameters g_m and r_e . [4 points] c) [4 points] Draw the small-signal equivalent circuit using the π model for the BJT. d) e) Find the input and output resistances of this amplifier. [3 points] Calculate the voltage gain of this amplifier. [4 points] f)

