

King Fahd University of Petroleum & Minerals Electrical Engineering Department Fall 2011 (111)

EE 203 – Exam I Saturday, October 15, 2011 6:00-7:30 PM

Name	
ID	

	Dr. W. Mesbah	Dr. O. Hammi
Section	1 and 2	3 and 4

Problem	Grade
1 (20 points)	
2 (20 points)	
3 (20 points)	
Total (60 points)	

Question 1:

For the full wave rectifier circuit shown in Figure 1.

a) Find the value of the capacitance and the required secondary peak voltage V_1 required for the full-wave rectifier circuit to produce an average DC output voltage of + 9.7V with ripple of \pm 0.6V. Assume the diode drop is 0.7V (neglect the diode resistance) and the operating frequency is 60Hz. [6 points]

b) Find the transformer turns ratio N (between the primary coil and half of the secondary coil) assuming that the input voltage v_s has a peak amplitude of 110V. [2 points]

c) Sketch V_I and V_o as a function of time (<u>for at least two periods</u>) and show the important values [5 points]

[4 points]

d) Find the diode peak inverse voltage [3 points]

e) Modify the circuit to produce –9.7V average DC output

Figure 1

Question 2:

For the circuit shown in Figure 2. The input voltage is $V_{in}=5cos(\omega t+\theta)$. The diode D_1 is ideal and each of the diodes D_2 and D_3 has a constant voltage drop of 0.7V when conducting.

a) Find the expressions of the voltage V_{out} as a function of the input voltage V_{in} for V_{in} varying between -5V and +5V. [8 points]

b) Sketch the voltage V_{out} as a function of the input voltage V_{in} for V_{in} varying between -5V and +5V and show all important values. [6 points]

c) Sketch the voltages V_{in} and V_{out} as a function of time (<u>for at least one period</u>) and show all the important values. [6 points]

Figure 2

Question 3:

For the circuit shown in Figure 3. The transistors are identical. The parameters of each of them

are V_t=1V, $k'_n \frac{W}{L} = 2 mA/V^2$ and $\lambda = 0$ (channel modulation is neglected).

a) Assuming that both transistors are operating in saturation (pinch off), find the values of the voltages V_1 and V_2 . [12 points]

b) Verify the operating mode of each transistor.

Figure 3