

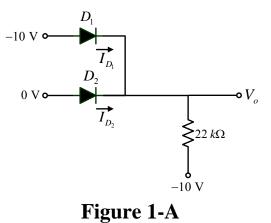
King Fahd University of Petroleum & Minerals Electrical Engineering Department Fall 2011 (111)

EE 203 – Final Exam Monday, January 16, 2011 7:00-10:00 PM

Name	
ID	

	Dr. W. Mesbah	Dr. O. Hammi	
Section	1 and 2	3 and 4	

Problem 1 (out o	1	2	3	4	5	6	Total
	(out of 10)	(out of 60)					
Grade							


Important:

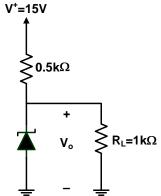
- Final answers must be written in the specified boxes. The steps should be included.

Problem 1 – Part A

For the circuit shown in Figure 1-A, the voltage drop across each conducting diode is 0.7V.

a) Find the output voltage V_o .[2 points]

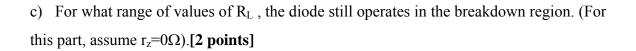
b) Find the current I_{D1} .[1 point]

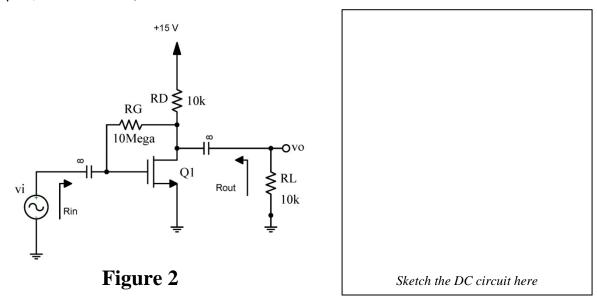

c) Find the current I_{D2} .[1 point]

 $I_{D2}=$

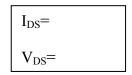
<u>Problem 1 – Part B</u>

For the circuit shown in Figure 1-B, the Zener diode has a voltage $V^{+}=15V$ drop of 9.1V at 9mA, $r_z=30\Omega$, and $I_{zk}=0.3$ mA.


a) Find the output voltage V_o with no load connected.[2 points]



b) Find the output line regulation with no load connected.[2 points]



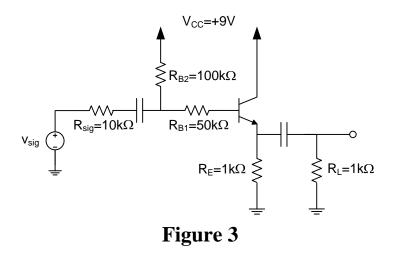
Problem 2

For the amplifier shown in Figure 2, assume that the NMOS has $V_t=1V$, $\mu_n C_{ox}W/L=1mA/V^2$, and $\lambda=0.01V^{-1}$.

- a) Sketch the DC circuit in the designated box. [1 point]
- b) Neglecting the effect of λ (<u>only in this part</u>), calculate the DC values I_{DS} and V_{DS}. [2 points]

c) Calculate the small-signal parameters g_m and r_0 . [2 points]

g _m =	
r ₀ =	


d) Draw the small-signal AC circuit using the π model of the transistor. [2 points]

e) Use the small-signal ac circuit to write the expressions of R_{out} , R_{in} , and the gain v_o/v_i (for the gain calculation <u>ONLY</u>, assume $R_G=\infty$). [3 points]

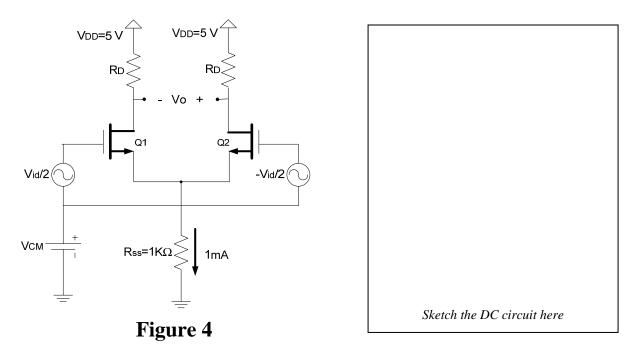
Problem 3:

Consider the circuit shown in Figure 3. The BJT transistor has β =100. Neglect the Early effect.

a) Draw the small signal equivalent circuit using the transistor's **<u>T model</u>**. [2 points]

b) Find the expressions of the input resistance R_{in} and the output resistance R_{out} of the amplifier.[2 points]

c) Calculate the values of the input resistance R_{in} and the output resistance R_{out} of the amplifier.[2 points]


d) Find the expression of the voltage gain v_{out}/v_{sig} in terms of R_{in} and/or R_{out} .(Do not replace R_{in} and/or R_{out} by the expression found in question b)) [2 points]

 $v_{out}/v_{sig} =$

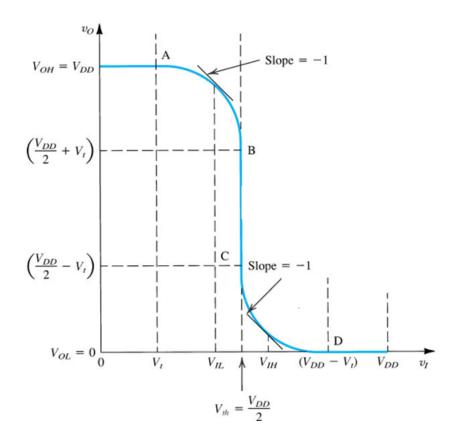
e) If the voltage v_{be} should not exceed 5mV. What is the maximum input voltage v_{sig_max} . [2 points]

 $v_{in_max} =$

<u>Problem 4</u>: Consider the circuit of Figure 4. The transistors Q_1 and Q_2 have $k'_n W/L = 2.5 \text{ mA/V}^2$, $V_t = 1 \text{ V}$, and $\lambda = 0$. The DC current through R_{ss} is 1 mA.

- a) Sketch the DC circuit in the designated box. [2 points]
- b) Find the required value of the DC voltage V_{CM} .[2 points]

c) Find the value of R_D that results in a differential gain A_d of -8 V/V. [2 points]


d) Determine the DC voltage at the drain of Q_1 . [2 points]

V_D=

e) Calculate the single-ended common mode gain (for an ac input signal). [2 points]

Problem 5 – Part A:

Consider the voltage transfer function of the CMOS shown in Figure 5-A. Indicate, <u>on</u> <u>the same figure</u>, the mode of operation of the NMOS and PMOS transistors in each region of the voltage transfer characteristic. Clearly show the limits of each region. [5 points]

Problem 5 – Part B:

a) What is the minimum number of transistors required to implement the following logic function using CMOS gates. [2 points]

 $Y = A\overline{B}C + ABC + AB\overline{C} + \overline{A}B\overline{C} + \overline{A}\overline{B}C$

Minimum number =

b) If "**p**" represent W/L of the PMOS of the basic inverter, design the PUN and the sizing of each transistor (show the sizes on the PUN circuit) for the function: $Y = \overline{B}C + B(A + \overline{A}\overline{C})$. (Do not simplify or change the equation. You do not have to plot the inverters). [3 points]

Problem 6:

Consider the ECL circuit shown in Figure 6. The transistors used have $V_{BE}=0.7V$ at $I_E=1$ mA. The current $I_{tot}=4$ mA all the time. Neglect the base currents when collector currents are present. Assume that $\beta_{Q2}=\beta_{Q3}=100$. Consider only the **OR** output at the emitter of Q_2 .

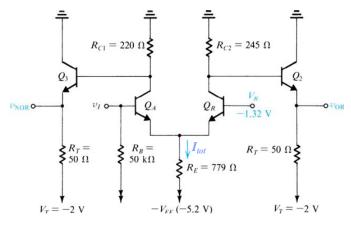


Figure 6

a) If we define the voltages V_{IL} and V_{IH} when the current in one branch is **95%** of I_{tot} . Calculate the voltages V_{IL} and V_{IH} for the OR output. **[4 points]**

$V_{IL} =$	
$V_{IH} =$	

b) Calculate the voltages $V_{\rm OL}$ and $V_{\rm OH}$ for the OR output. [4 points]

V_{OL}= V_{OH}=

c) Calculate the noise margins N_{ML} and N_{MH} for the OR output. [2 points]

N _{ML} =	
N _{MH} =	