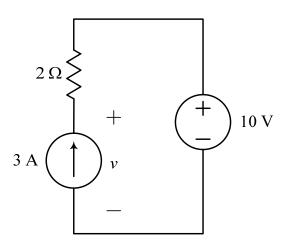


of Petroleum & Minerals

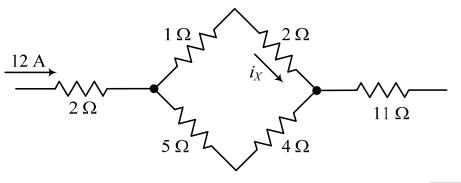
Electrical Engineering Department EE 204 Fundamentals of Electric Circuits Second Semester (102)

Exam I Wednesday, 16 March 2011 6:30 pm – 8:00 pm

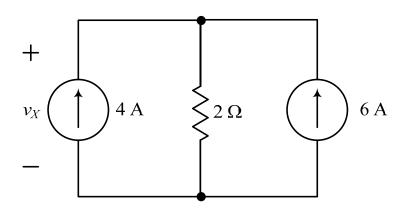

Name:		
ID:		
Section:		

Instructors	Sections	
Dr. Ahmad Yamani	1, 4, 6	
Dr. Qureshi	2	
Dr. Hammi	3	
Dr. Adel Balghonaim	5	
Mr. Noman Tasaduq	7	
Dr. Wajih Abul Al-Saud	8, 10	
Dr Abdulmalik Zidouri	9 11	

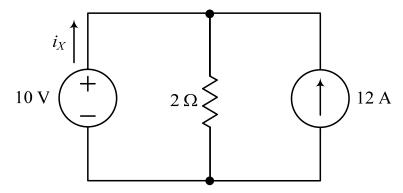
Problem	Score	Out of
1		40
2		30
3		30
Total		100


Problem 1

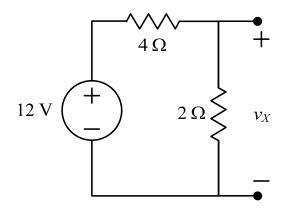
- a) In the following circuit, find
 - (i) the voltage v.
 - (ii) the power associated with the 3A current source P_{3A} .


v	V
P_{3A}	W

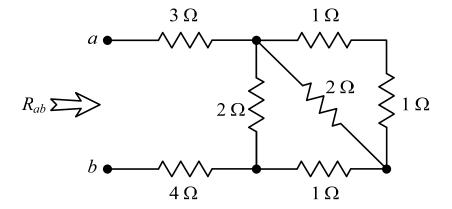
b) Use current division to find the current i_x .


 i_X A

c) Find the voltage v_X in the following circuit.


 v_X V

d) Find the current i_X in the following circuit.

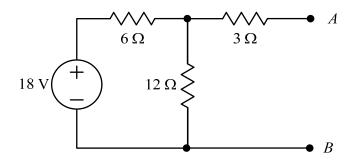

i_X	A
-------	---

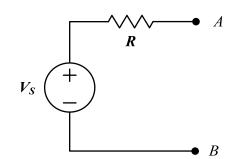
- e) In the following circuit, find
 - (i) the voltage v_X .
 - (ii) the power associated with the 12V voltage source P_{12V} .



ν_X	V
P_{12V}	W

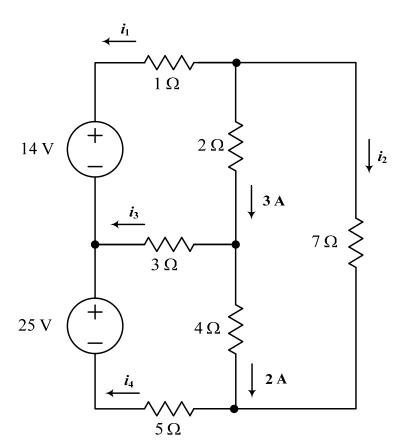
f) Find the equivalent resistance R_{ab} in the following.




- g) In the following circuit, which of these statements is true
 - 1) Both sources are supplying 20 W of Power.
 - 2) Both sources are absorbing 20 W of power.
 - 3) The power in both sources is zero because no resistors exist to absorb the power.
 - 4) The voltage source is supplying 20 W and the current source is absorbing 20 W.
 - 5) The voltage source is absorbing 20 W and the current source is supplying 20 W.
 - 6) It is not possible to determine the power supplied or absorbed by the two sources because no resistors exist in the circuit.
 - 7) This circuit is invalid and the two sources should not be connected in this form.

Correct Statement

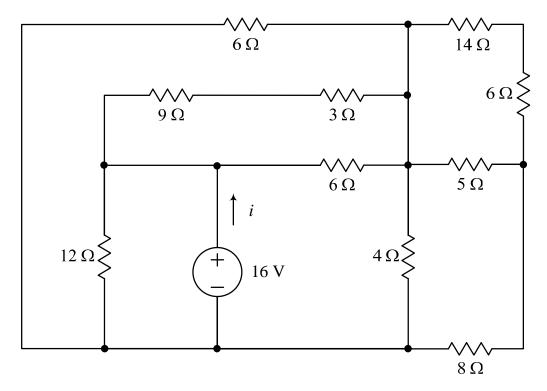
h) Use source transformation to find the values of resistor R and voltage of the source V_S that make the two circuits seen between points A and B equivalent to each other.



V_S	V
R	Ω

Problem 2

In the following circuit,


- a) Find the currents i_1 , i_2 , i_3 , and i_4 .
- b) Find the powers associated with the two voltage sources (P_{14V} and P_{25V}).
- c) Find the powers in all resistors and determine if the law of conservation of power is satisfied or not (show your work).

i_1			A
i_2			A
i_3			A
i_4			A
$P_{14 m V}$			W
P _{25V}			W
Conserve of Pow Satisfie	er		

Problem 3

Using circuit reduction methods (series and parallel combination of resistors), find the value of the current i in the following circuit.

