

King Fahd University of Petroleum and Minerals

Department of Electrical Engineering EE 204 Fundamentals of Electric Circuits, Second Semester (102)

Final Exam Sunday, 12 June 2011 7:30 am – 10:00 am (150 minutes)

Name:			
ID:			
Section:			

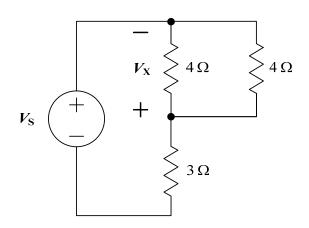
Instructors	Sections	
Dr. Ahmad Yamani	1, 4, 6	
Dr. Qureshi	2	
Dr. Hammi	3	
Dr. Adel Balghonaim	5	
Mr. Noman Tasaduq	7	
Dr. Wajih Abul Al-Saud	8, 10	
Dr. Abdulmalik Zidouri	9, 11	

Prob.	Score	Out of
1		5
2		5

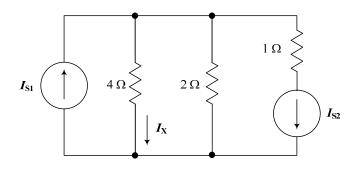
Prob.	Score Out of	
7		8
8		10

Prob.	Score	Out of
3		9
4		9

Prob.	Score	Out of
9		8
10		10


Prob.	Score	Out of
5		9
6		9

Prob.	Score	Out of
11		6
12		12


Total 100

Good luck!

(1) Using voltage division in the circuit below, we find that V_X is equal to:

(2) Using current division in the circuit below, we find that I_X is equal to:

(A)
$$V_x = V_s \times \frac{4}{7}$$

(B)
$$V_x = -V_s \times \frac{4}{7}$$

(C)
$$V_x = -V_s \times \frac{2}{5}$$

(D)
$$V_x = -V_s \times \frac{2}{7}$$

$$(E) \quad V_{x} = -V_{s} \times \frac{4}{10}$$

(F)
$$V_x = V_s \times \frac{2}{5}$$

(G) Non of the above

The correct answer is (

(A)
$$I_x = (I_{s_1} - I_{s_2}) \times \frac{3}{7}$$

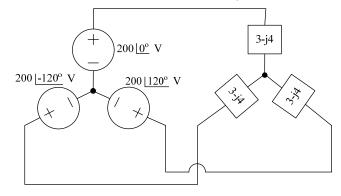
(B)
$$I_x = (I_{s_1} - I_{s_2}) \times \frac{2}{6}$$

(C)
$$I_x = (I_{s_1} - I_{s_2}) \times \frac{2}{7}$$

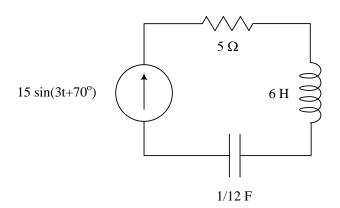
(D)
$$I_x = (I_{s1}) \times \frac{2}{7}$$

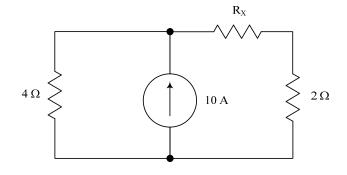

(E)
$$I_x = (I_{s2} - I_{s1}) \times \frac{2}{6}$$

(F)
$$I_x = (I_{s2} - I_{s1}) \times \frac{4}{6}$$

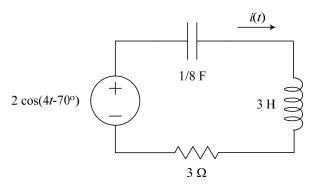

(G) Non of the above

The correct answer is (

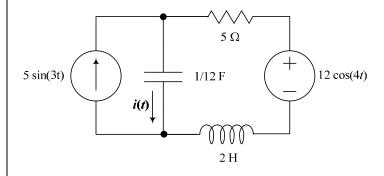

- (3) Write all NODE-VOLTAGE equations necessary to solve for the node voltage in the circuit.
 - Your equations should be in terms of the node voltages only.
 - Do not simplify or solve the equations.
 - You will loose marks for missing or extra equations.


(4) For the BALANCED 3-phase system shown below, find the total average power $P_{3\text{-phase}}$ consumed in the 3-phase load (The voltages of the source are RMS values).

(5) Find the <u>complex power</u> of the source \hat{P}_{source} .

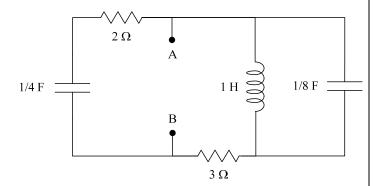


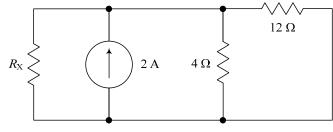
(6) The current source generates 300 W of power. Find the power delivered to the resistor $R_{\rm X}$.



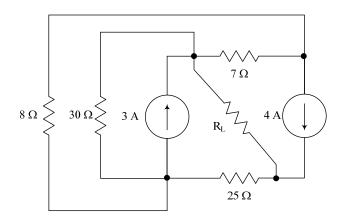
$$P_{R_{\chi}} = W$$

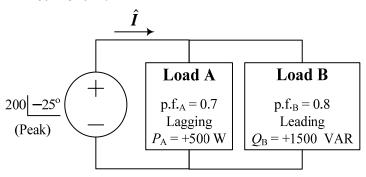
(7) Find the current i(t) shown in the circuit below.


(8) In the following circuit, find the current i(t).


i	(t) =	\mathbf{A}

$$i(t) =$$


(9) Given that the circuit below operates at a frequency $\omega = 4 \text{ rad/s}$, find the equivalent impedance Z seen between points A and B.


(10) Find ALL values of resistance R_x that will make the power consumed by it to be equal to 1 W.

(11) Find $R_{\rm L}$ that will absorb the maximum power from the circuit (DO NOT find the maximum power).

(12) Load A and Load B are connected in parallel across a voltage source $200 \left[-35^{\circ} \right]$ V (peak). Load A has a <u>leading</u> power factor (p.f.) of 0.7 with real power of +500 W. Load B has a <u>lagging</u> p.f. of 0.8 with reactive power +1500 VAR. Determine the current \hat{I} .

 $R_{
m L}$ = Ω

$$\hat{I} = A$$