

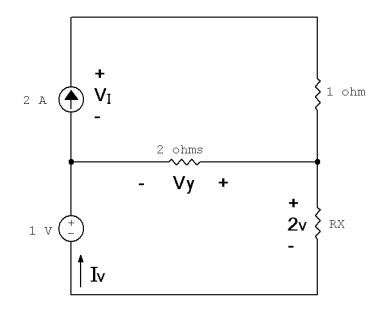
King Fahd University of Petroleum & Minerals Electrical Engineering Department

EE204: Fundamentals of Electric Circuits

Semester 101

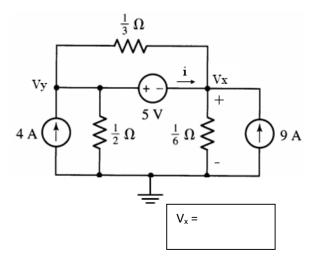
Final Exam

Time: 2 hr 30 min


Section No.

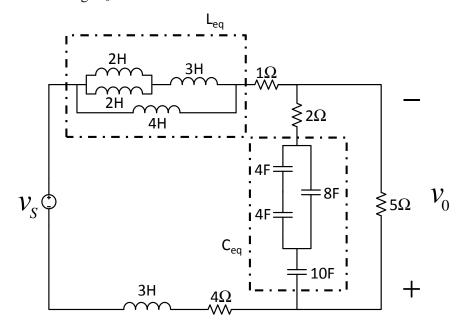
Student Name		
Student ID		
Q#1	20	
Q#2	20	
Q#3	20	
Q#4	20	
Q#5	20	
TOTAL	100	

<u>Problem I</u>:


The circuit shown below has an unknown resistance Rx with a voltage of 2 volts across its terminals. Use KVL, KCL and ohms law **ONLY** to compute the followings:

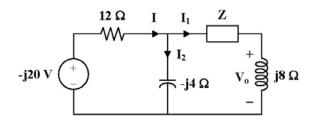
- 1- First compute Vy
- 2- Compute the voltage across the 2 ampere current source, VI
- 3- Compute the current passing through the 1 volt voltage source Iv
- 4- Compute the unknown resistance Rx

<u>Problem II</u>:


Using node voltage analysis method to find the voltage $\boldsymbol{v}_{\boldsymbol{x}}$ in the circuit below.

<u>Problem III</u>:

For the circuit below,


- 1. Calculate the equivalent inductance L_{eq} for the inductors included in the dashed box.
- 2. Calculate the equivalent capacitance C_{eq} for the capacitors included in the dashed box.
- 3. For $v_s = 12V$, calculate the voltage v_0 shown across the 5Ω resistor.

Problem IV:

In the circuit of the following figure, given that $Vo = 4\angle 0^{\circ}V$

- a) Find the current I₁
- b) Use mesh analysis technique to find I
- c) Then, find the value of the impedance Z
- d) Find the value of the reactive element (L or C) of the impedance Z if the frequency is 60 Hz.

Problem V:

A load absorbs an average power of 1600 W at a lagging power factor of 0.8 when the voltage across it is 200 V_{rms} . This load is supplied by a source V_s through a transmission line having an impedance of 5+j2.5 (Ohms). Find

- 1. The current flowing in the load
- 2. The impedance of the load
- 3. The apparent power absorbed by the load
- 4. The average power loss in the line.
- 5. What is the value of the capacitor when placed parallel to the load will correct the power factor to unity if the frequency f = 60 Hz.