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1.1 Introduction

The study of the steady-state and transient performance of adaptive filters is a challenging
task due to the nonlinear and stochastic nature of their update equations (see, e.g., [1]–[3]).
The purpose of this chapter is to provide an overview of an energy-conservation approach to
studying the performance of adaptive filters in a unified manner. The approach is based on
showing that certain a-priori and a-posteriori errors maintain an energy balance for all time
instants [4]–[6]. When examined under expectation, this energy balance leads to a variance
relation that characterizes the dynamics of an adaptive filter [9]–[13]. An advantage of the
energy framework is that it allows us to push the algebraic manipulations of variables to
a limit, and to eliminate unnecessary cross-terms before appealing to expectations. This
is a useful step because it is usually easier to handle random variables algebraically than
under expectations, especially for higher-order moments. A second advantage of the energy
arguments is that they can be pursued without restricting the distribution of the input data.
To illustrate this point, we have opted not to restrict the regression data to being Gaussian
or white in most of the discussions below. Instead, all results are derived for arbitrary input
distributions. Of course, by specializing the results to particular distributions, some known
results from the literature can be recovered as special cases of the general framework.

As with most adaptive filter analyses, progress is difficult without relying on simplifying
assumptions. In the initial part of our presentation, we derive exact energy-conservation and
variance relations that hold for a large class of adaptive filters and without any approxima-
tions. Subsequent discussions will call upon simplifying assumptions in order to make the
analysis more tractable. The assumptions tend to be reasonable for small step-sizes and long
filters.

1.2 The Data Model

Consider reference data {d(i)} and regression data {ui}, assumed related via the linear
regression model

d(i) = uiw
o + v(i) (1.1)

for some M × 1 unknown column vector wo that we wish to estimate. Here ui is a regressor,
taken as a row vector, and v(i) is measurement noise. Observe that we are using boldface
letters to denote random quantities, which will be our convention throughout this chapter.
Also, all vectors in our presentation are column vectors except for the regressor ui. In this
way, the inner product between ui and wo is written simply as uiw

o without the need for
transposition symbols.
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In Eq. (1.1), {d(i),ui,v(i)} are random variables that satisfy the following conditions:

a){v(i)} is zero-mean, independent and identically distributed with variance Ev2(i) = σ2
v .

b) v(i) is independent of uj for all i, j.
c) The regressor ui is zero-mean and has covariance matrix EuT

i ui = Ru > 0.
(1.2)

We focus in the first part of the chapter on data-normalized adaptive filters for generating
estimates for wo, viz., on updates of the form

wi = wi−1 + µ
uT

i

g[ui]
e(i), i ≥ 0 (1.3)

where

e(i) = d(i)− uiwi−1 (1.4)

is the estimation error at iteration i, and g[ui] > 0 is some function of ui. Typical choices
for g are

g[u] = 1 (LMS), g[u] = ‖u‖2 (NLMS), g[u] = ε + ‖u‖2 (ε-NLMS)

The initial condition w−1 of (1.3) is assumed to be independent of all {d(j),uj,v(j)}. Later
in the chapter we study adaptive filters with error nonlinearities in their update equations
— see Eq. (1.52).

Our purpose is to examine the transient and steady-state performance of such data-
normalized filters in a unified manner (i.e., uniformly for all g). The first step in this regard
is to establish an energy-conservation relation that holds for a large class of adaptive filters,
and then use it as the basis of all subsequent analysis.

1.3 Energy-Conservation Relation

Let w̃i = wo−wi denote the weight-error vector at iteration i, and let Σ denote some M×M
positive-definite matrix. Define further the weighted a-priori and a-posteriori errors:

eΣ
a (i)

∆
= uiΣw̃i−1, eΣ

p (i)
∆
= uiΣw̃i (1.5)

When Σ = I, we recover the standard definitions

ea(i) = uiw̃i−1, ep(i) = uiw̃i (1.6)

The freedom in selecting Σ will be seen to be useful in characterizing several aspects of the
dynamic behavior of an adaptive filter. For now, we shall treat Σ as an arbitrary weighting
matrix.
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It turns out that the errors {w̃i, w̃i−1, e
Σ
a (i), eΣ

p (i)} satisfy a fundamental energy-conservation
relation. To arrive at the relation, we subtract wo from both sides of (1.3) to get

w̃i = w̃i−1 − µ
uT

i

g[ui]
e(i) (1.7)

and then multiply (1.7) by uiΣ from the left to conclude that

eΣ
p (i) = eΣ

a (i)− µ
‖ui‖2

Σ

g[ui]
e(i) (1.8)

where the notation ‖ui‖2
Σ denotes the squared weighted Euclidean norm of ui, viz.,

‖ui‖2
Σ = uiΣuT

i

Relation (1.8) can be used to express e(i)/g[ui] in terms of {eΣ
p (i), eΣ

a (i)} and to eliminate
this term from (1.7). Doing so leads to the equality

‖ui‖2
Σ · w̃i + uT

i eΣ
a (i) = ‖ui‖2

Σ · w̃i−1 + uT
i eΣ

p (i) (1.9)

By equating the weighted Euclidean norms of both sides of this equation, we arrive, after a
straightforward calculation, at the relation:

‖ui‖2
Σ · ‖w̃i‖2

Σ +
(
eΣ

a (i)
)2

= ‖ui‖2
Σ · ‖w̃i−1‖2

Σ +
(
eΣ

p (i)
)2

(1.10)

This energy relation is an exact result that shows how the energies of the weight-error vectors
at two successive time instants are related to the energies of the a-priori and a-posteriori
estimation errors.2 In addition, it follows from e(i) = uiw̃i−1 + v(i), and from (1.7), that
the weight-error vector satisfies

w̃i =

(
I − µ

uT
i ui

g[ui]

)
w̃i−1 − µ

uT
i

g[ui]
v(i) (1.11)

1.4 Weighted Variance Relation

The result (1.10) with Σ = I was developed in [4] and subsequently used in a series of works
to study the robustness of adaptive filters (e.g., [5]–[8]). It was later used in [9]–[11] to
study the steady-state and tracking performance of adaptive filters. The incorporation of a
weighting matrix Σ in [12, 13] turns out to be useful for transient (convergence and stability)
analysis.

In transient analysis we are interested in characterizing the time evolution of the quantity
E‖w̃i‖2

Σ, for some Σ of interest (usually, Σ = I or Σ = Ru). To arrive at this evolution,

2Later in Sec. 1.13 we shall provide an interpretation of the energy relation (1.10) in terms of Snell’s Law
for light propagation.
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we use (1.8) to replace eΣ
p (i) in (1.10) in terms of eΣ

a (i) and e(i). This step yields, after
expanding and grouping terms,

‖ui‖2
Σ · ‖w̃i‖2

Σ = ‖ui‖2
Σ · ‖w̃i−1‖2

Σ +

µ2(‖ui‖2
Σ)2

g2[ui]
‖w̃i−1‖2

uT
i ui

+

µ2(‖ui‖2
Σ)2

g2[ui]
v2(i) −

µ‖ui‖2
Σ

g[ui]
‖w̃i−1‖2

ΣuT
i ui+uT

i uiΣ
+

2µ2 (‖ui‖2
Σ)2

g2[ui]
v(i)ea(i) −

2µ
‖ui‖2

Σ

g[ui]
v(i)eΣ

a (i) (1.12)

Assuming the event ‖ui‖2
Σ = 0 occurs with zero probability, we can eliminate ‖ui‖2

Σ from
both sides of (1.12) and take expectations to arrive at:

E‖w̃i‖2
Σ = E

(‖w̃i−1‖2
Σ′

)
+ µ2σ2

vE

(‖ui‖2
Σ

g2[ui]

)
(1.13)

where the weighting matrix Σ′ is defined by

Σ′ = Σ− µ

g[ui]
ΣuT

i ui − µ

g[ui]
uT

i uiΣ +
µ2‖ui‖2

Σ

g2[ui]
uT

i ui (1.14)

Observe that Σ′ is a random matrix due to its dependence on the data (and, hence, the use
of the boldface notation for it). The matrix Σ, on the other hand, is not random.

1.4.1 Independent Regressors

Relations (1.11), (1.13) and (1.14) characterize the dynamic behavior of data-normalized
adaptive filters for generic input distributions; they are all exact relations. Still, recursion
(1.13) is hard to propagate since it requires the evaluation of the expectation

E
(‖w̃i−1‖2

Σ′
)

= E
(
w̃T

i−1Σ
′w̃i−1

)

The difficulty is due to the fact that Σ′ is a random matrix that depends on ui, and w̃i−1 is
dependent on prior regressors as well. In order to progress further in the analysis, we shall
assume that

The {ui} are independent and identically distributed (1.15)
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which allows us to deal with Σ′ independently from w̃i−1. This so-called independence
assumption is commonly used in the literature. Although rarely applicable, it gives good
results for small step-sizes.

Under (1.15), it is easy to verify that w̃i−1 becomes independent of Σ′ and, consequently,
that

E
[‖w̃i−1‖2

Σ′
]

= E
[
‖w̃i−1‖2

E [Σ′]

]

with the weighting matrix Σ′ replaced by its mean, which we shall denote by Σ′. In this
way, the variance recursion (1.13) becomes

E‖w̃i‖2
Σ = E‖w̃i−1‖2

Σ′ + µ2σ2
vE

(‖ui‖2
Σ

g2[ui]

)
(1.16)

with deterministic weighting matrices {Σ, Σ′} and where, by evaluating the expectation of
(1.14),

Σ′ = Σ − µΣE

(
uT

i ui

g[ui]

)
− µE

(
uT

i ui

g[ui]

)
Σ + µ2E

(‖ui‖2
Σ

g2[ui]
uT

i ui

)
(1.17)

Observe that the expression for Σ′ is data-dependent only.
Finally, taking expectations of both sides of (1.11), and using (1.15), we find that

Ew̃i =

(
I − µE

(
uT

i ui

g[ui]

))
· Ew̃i−1 (1.18)

The expressions (1.16)–(1.18) show that studying the transient behavior of a data-normalized
adaptive filter in effect requires evaluating the three multivariate moments:

E

(‖ui‖2
Σ

g2[ui]

)
, E

(
uT

i ui

g[ui]

)
, and E

(‖ui‖2
Σ

g2[ui]
uT

i ui

)

which are functions of ui only. In terms of these moments, relations (1.16)–(1.18) can now
be used to characterize the dynamic behavior of adaptive filters under the independence
assumption (1.15). We start with the mean-square (transient) behavior.

1.5 Mean-Square Behavior

Let σ denote the M2 × 1 column vector that is obtained by stacking the columns of Σ on
top of each other, written as σ = vec(Σ). Likewise, let σ′ = vec(Σ′). We shall also use the
vec−1(·) notation and write Σ = vec−1(σ) to recover Σ from σ. Similarly, Σ′ = vec−1(σ′).

Then using the Kronecker product notation [15], and the following property, for arbitrary
matrices {X, Y, Z} of compatible dimensions,

vec(XY Z) = (ZT ⊗X)vec(Y )
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we can easily verify that relation (1.17) for Σ′ transforms into the linear vector relation

σ′ = Fσ

where F is M2 ×M2 and given by

F = I − µA + µ2B (1.19)

in terms of the symmetric matrices {A,B},

A = (P ⊗ IM) + (IM ⊗ P )

B = E

(
uT

i ui ⊗ uT
i ui

g2[ui]

)

P = E

(
uT

i ui

g[ui]

)
(1.20)

Actually, A is positive-definite (because P is) and B is nonnegative-definite. Using the
column notation σ, and the relation σ′ = Fσ, we can write (1.16)–(1.17) as

E‖w̃i‖2
vec−1(σ) = E‖w̃i−1‖2

vec−1(Fσ) + µ2σ2
vE

(‖ui‖2
σ

g2[ui]

)

which we shall rewrite more succinctly, by dropping the vec−1(·) notation and keeping the
weighting vectors, as

E‖w̃i‖2
σ = E‖w̃i−1‖2

Fσ + µ2σ2
vE

(‖ui‖2
σ

g2[ui]

)
(1.21)

Now, as mentioned earlier, in transient analysis we are interested in the evolution of
E‖w̃i‖2 and E‖w̃i‖2

Ru
; the former quantity is the filter mean-square deviation while the

second quantity relates to the filter mean-square error (or learning) curve since

Ee2(i) = Ee2
a(i) + σ2

v = E‖w̃i−1‖2
Ru

+ σ2
v

The quantities {E‖w̃i‖2, E‖w̃i‖2
Ru
} are in turn special cases of E‖w̃i‖2

Σ obtained by choosing
Σ = I or Σ = Ru. Therefore, in the sequel, we focus on studying the evolution of E‖w̃i‖2

Σ

for arbitrary Σ.
From (1.21) we see that in order to evaluate E‖w̃i‖2

σ, we need E‖w̃i‖2
Fσ with weighting

vector Fσ. This term can be deduced from (1.21) by writing it for σ ← Fσ, i.e.,

E‖w̃i‖2
Fσ = E‖w̃i−1‖2

F 2σ + µ2σ2
vE

(‖ui‖2
Fσ

g2[ui]

)
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with the weighted term E‖w̃i‖2
F 2σ. This term can in turn be deduced from (1.21) by writing

it for σ ← F 2σ. Continuing in this fashion, for successive powers of F , we arrive at

E‖w̃i‖2
F M2−1σ

= E‖w̃i−1‖2
F M2

σ
+ µ2σ2

vE

(
‖ui‖2

F M2−1σ

g2[ui]

)

in terms of the M2-power of F (recall that F is M2 ×M2).
Fortunately, this procedure terminates. To see this, let p(x) = det(xI − F ) denote the

characteristic polynomial of F , say

p(x) = xM2

+ pM2−1x
M2−1 + pM2−2x

M2−2 + . . . + p1x + p0

with coefficients {pi}. Then, since p(F ) = 0 in view of the Cayley-Hamilton theorem [15],
we have

E‖wi‖2
F M2σ

=
M2−1∑

k=0

−pkE‖wi‖2
F kσ

Putting these results together, we conclude that the transient (mean-square) behavior of the
filter (1.3) is described by an M2−dimensional state-space model of the form:

Wi = FWi−1 + µ2σ2
vY (1.22)

where the M2 × 1 vectors {Wi,Y} are defined by

Wi =




E‖w̃i‖2
σ

E‖w̃i‖2
Fσ

...
E‖w̃i‖2

F M2−2σ

E‖w̃i‖2
F M2−1σ




, Y =




E (‖ui‖2
σ/g

2[ui])
E (‖ui‖2

Fσ/g
2[ui])

...

E
(
‖ui‖2

F M2−2σ
/g2[ui]

)

E
(
‖ui‖2

F M2−1σ
/g2[ui]

)




(1.23)

and the M2 ×M2 coefficient matrix F is given by

F =




0 1
0 0 1
0 0 0 1
...
0 0 0 1
−p0 −p1 −p2 . . . −pM2−1




(1.24)

The entries of Y can be written more compactly as

Y = col
{
Tr(Qvec−1(F kσ)), k = 0, 1, . . . ,M2 − 1

}
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where

Q = E

(
uT

i ui

g2[ui]

)
(1.25)

and the notation vec−1(F kσ) recovers the weighting matrix that corresponds to the vector
F kσ.

When Σ = I, the evolution of the top entry of Wi in (1.22) describes the mean-square
deviation of the filter, i.e., E‖w̃i‖2. If, on the other hand, Σ is chosen as Σ = Ru, the
evolution of the top entry of Wi describes the excess mean-square error (or learning curve)
of the filter, i.e., E‖w̃i‖2

Ru
= Ee2

a(i).
The learning curve can also be characterized more explicitly as follows. Let r = vec(Ru)

and choose σ = r. Iterating (1.21) we find that

E‖w̃i‖2
r = ‖w̃−1‖2

F i+1r + µ2σ2
vE

[‖ui‖2
(I+F+···+F i)r

g2[ui]

]

that is,
E‖w̃i‖2

r = ‖w̃−1‖2
ai

+ µ2σ2
vb(i)

where the vector ai and the scalar b(i) satisfy the recursions

ai = Fai−1, a−1 = r

b(i) = b(i− 1) + E

[
‖ui‖2

ai−1

g2[ui]

]
, b(−1) = 0

Usually, w−1 = 0 so that w̃−1 = wo. Using the definitions for {ai, b(i)}, it is easy to verify
that

Ee2
a(i) = Ee2

a(i− 1) + ‖wo‖2
F i−1(F−I)r + µ2σ2

vTr(Qvec−1(F i+1r)) (1.26)

which describes the learning curve of data-normalized adaptive filters as in (1.3). Further
discussions on the learning behavior of adaptive filters can be found in [16].

1.6 Mean-Square Stability

Recursion (1.22) shows that the adaptive filter will be mean-square stable if, and only if, the
matrix F is a stable matrix, i.e., all its eigenvalues lie inside the unit circle. But since F
has the form of a companion matrix, its eigenvalues coincide with the roots of p(x), which in
turn coincide with the eigenvalues of F . Therefore, the mean-square stability of the adaptive
filter requires the matrix F in (1.19) to be a stable matrix.

Now it can be verified that matrices F of the form (1.19), for arbitrary {A > 0, B ≥ 0},
are stable for all values of µ in the range:

0 < µ < min

{
1

λmax(A−1B)
,

1

max
{
λ(H) ∈ IR+

}
}

(1.27)
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where the second condition is in terms of the largest positive real eigenvalue of the block
matrix,

H =

[
A/2 −B/2
IM2 0

]

when it exists. Since H is not symmetric, its eigenvalues may not be positive or even real.
If H does not have any real positive eigenvalue, then the upper bound on µ is determined
by 1/λmax(A

−1B) alone.3

Likewise, the mean-stability of the filter, as dictated by (1.18), requires the eigenvalues
of (I − µP ) to lie inside the unit circle or, equivalently,

µ < 2/λmax(P ) (1.28)

Combining (1.27) and (1.28) we conclude that the filter is stable in the mean and mean-
square senses for step-sizes in the range

µ < min

{
2

λmax(P )
,

1

λmax(A−1B)
,

1

max
{
λ(H) ∈ IR+

}
}

(1.29)

1.7 Steady-State Performance

Steady-state performance results can also be deduced from (1.21). Assuming the filter is
operating in steady-state, recursion (1.21) gives in the limit

lim
i→∞

E‖w̃i‖2
(I−F )σ = µ2σ2

vE

[‖ui‖2
σ

g2[ui]

]

This expression allows us to evaluate the steady-state value of E‖w̃i‖2
S for any weighting

matrix S, by choosing σ such that

(I − F )σ = vec(S)

i.e.,
σ = (I − F )−1vec(S)

In particular, the filter excess mean-square error, defined by

EMSE = lim
i→∞

Ee2
a(i)

corresponds to the choice S = Ru since, by virtue of the independence assumption (1.15),
Ee2

a(i) = E‖w̃i−1‖2
Ru

. In other words, we should select σ as

σemse = (I − F )−1vec(Ru)

3The condition involving λmax(A−1B) in (1.27) guarantees that all eigenvalues of F are less than one,
while the condition involving H ensures that all eigenvalues of F are larger than −1.
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On the other hand, the filter mean-square deviation, defined as

MSD = lim
i→∞

E‖w̃i‖2

is obtained by setting S = I, i.e.,

σmsd = (I − F )−1vec(I)

Let {Σemse, Σmsd} denote the weighting matrices that correspond to the vectors {σemse, σmsd},
i.e.,

Σemse = vec−1(σemse), Σmsd = vec−1(σmsd)

Then we are led to the following expressions for the filter performance:

EMSE = µ2σ2
vTr(QΣemse)

MSD = µ2σ2
vTr(QΣmsd)

(1.30)

Alternatively, we can also write

EMSE = µ2σ2
vvecT (Q)σemse = µ2σ2

vvecT (Q)(I − F )−1vec(Ru)

MSD = µ2σ2
vvecT (Q)σmsd = µ2σ2

vvecT (Q)(I − F )−1vec(I)
(1.31)

While these steady-state results are obtained here as a consequence of the variance rela-
tion (1.21), which relies on the independence assumption (1.15), it turns out that steady-state
results can also be deduced in an alternative manner that does not rely on using the inde-
pendence condition. This alternative derivation starts from (1.10) and uses the fact that
E‖w̃i‖2 = E‖w̃i−1‖2 in steady-state to derive expressions for the filter EMSE; the details
are spelled out in [10, 11].

1.8 Small Step-Size Approximation

Returning to the expression of F in (1.19), and to the performance results (1.30), we see that
they are defined in terms of moment matrices {A,B, P, Q}. These moments are generally
not easy to evaluate for arbitrary input distributions and data nonlinearities g. This fact
explains why it is common in the literature to resort to Gaussian or whiteness assumptions
on the regression data.

In our development so far, all results concerning filter transient performance, stability,
and steady-state performance (e.g., (1.22), (1.26), (1.29), and (1.30)) have been derived
without restricting the distribution of the regression data to being Gaussian or white. In
order to simplify the analysis, we shall keep the input distribution generic and appeal instead
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to approximations pertaining to the step-size value, to the filter length, and also to a fourth-
order moment approximation. In this section, we discuss the small-step size approximation.

To begin with, even though we may not have available explicit values for the moments
{A,B, P, Q} in general, we can still assert the following. If the distribution of the regression
data is such that the matrix B is finite, then there always exists a small enough step-size for
which F (and, hence, the filter) is stable. To see this, observe first that the eigenvalues of
I − µA are given by

{1− µ[λk(P ) + λj(P )]}
for all combinations 1 ≤ j, k ≤ M of the eigenvalues of P . Now if B is bounded, then the
maximum eigenvalue of F is bounded by

λmax(F ) ≤ 1− 2µλmin(P ) + µ2β

for some finite positive scalar β (e.g., β = λmax(B)). The upper bound on λmax(F ) is a
quadratic function of µ, and it is easy to verify that the values of this function are less than
one for step-sizes in the range (0, 2λmin(P )/β). Since λmin(P )/β is positive, we conclude
that there should exist a small enough µ such that F is stable and, consequently, the filter
is mean-square stable.

Now for such small step-sizes, we may ignore the quadratic term in µ that appears in
(1.17), and approximate the variance relation (1.16)–(1.17) by

E‖w̃i‖2
Σ = E‖w̃i−1‖2

Σ′ + µ2σ2
vE

(‖ui‖2
Σ

g2[ui]

)

Σ′ = Σ − µΣP − µPΣ
(1.32)

or, equivalently, using the weighting vector notation, by

E‖w̃i‖2
σ = E‖w̃i−1‖2

Fσ + µ2σ2
vE

(‖ui‖2
σ

g2[ui]

)

F = I − µA

where P = E
(
uT

i ui/g[ui]
)
. Moreover, since I−F = µA, we can also approximate the EMSE

and MSD performances (1.30) of the filter by

EMSE ≈ µσ2
vTr(QΣemse)

MSD ≈ µσ2
vTr(QΣmsd)

(1.33)

where now {Σemse, Σmsd} denote the weighting matrices that correspond to the vectors

σemse = A−1vec(Ru), σmsd = A−1vec(I)

That is, {Σemse, Σmsd} are the unique solutions of the Lyapunov equations

PΣmsd + ΣmsdP = I and PΣemse + ΣemseP = Ru
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It is easy to verify that Σmsd = P−1/2 so that the MSD expression can be written more
explicitly as

MSD ≈ µσ2
v

2
Tr(QP−1) (1.34)

For example, in the special case of LMS, for which g[u] = 1 and P = Ru = Q, the above
expressions give for small step-sizes:

EMSE ≈ µσ2
vTr(Ru)

2
, MSD ≈ µσ2

vM

2
(LMS) (1.35)

Using the simplified variance relation (1.32), we can also describe the dynamic behavior
of the mean-square deviation of the filter by means of an M−dimensional state-space model,
as opposed to the M2-dimensional model (1.22). To see this, let P = U∆UT denote the
eigen-decomposition of P > 0, and introduce the transformed quantities:

wi = UT w̃i, ui = uiU, Σ = UT ΣU, Q = UT QU

Then the variance relation (1.32) can be equivalently rewritten as4

E‖wi‖2
Σ

= E‖wi−1‖2

Σ
′ + µ2σ2

vE

(‖ui‖2
Σ

g2[ui]

)

Σ
′
= Σ − µΣ∆ − µ∆Σ

(1.36)

The expression for Σ
′
shows that it will be diagonal as long as Σ is diagonal. Therefore,

since we are free to choose Σ (and, consequently, Σ), we can assume that Σ
′
is diagonal. In

this way, {Σ, Σ
′} will be fully characterized by their diagonal entries. Thus let {σ, σ′} denote

M × 1 vectors that collect the diagonal entries of {Σ, Σ
′}, i.e.,

σ = diag(Σ), σ′ = diag(Σ
′
)

Then from (1.36) we find that
σ′ = Fσ

where F is the M ×M matrix

F = I − µA, A = 2∆

Repeating the arguments that led to (1.22) we can then establish that, for sufficiently small
step-sizes, the evolution of E‖wi‖2

σ is described by the following M−dimensional state-space
model:

W i = F W i−1 + µ2σ2
vY (1.37)

4Usually, g[·] is invariant under orthogonal transformations, i.e., g[ui] = g[ui]. This is the case for LMS,
NLMS, and ε−NLMS.
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where the M × 1 vectors {W i,Y} are defined by

W i =




E‖wi‖2
σ

E‖wi‖2
Fσ

...
E‖wi‖2

F
M−2

σ

E‖wi‖2

F
M−1

σ




, Y =




E (‖ui‖2
σ/g

2[ui])
E

(‖ui‖2
Fσ

/g2[ui]
)

...

E
(
‖ui‖2

F
M−2

σ
/g2[ui]

)

E
(
‖ui‖2

F
M−1

σ
/g2[ui]

)




(1.38)

and the M ×M coefficient matrix F is given by

F =




0 1
0 0 1
0 0 0 1
...
0 0 0 1
−p0 −p1 −p2 . . . −pM−1




(1.39)

where the {pi} are the coefficients of the characteristic polynomial of F . If we select σ =
vec(I) then

‖wi‖2
σ = ‖wi‖2 = ‖UT w̃i‖2 = ‖w̃i‖2

since U is orthogonal. In this case, the top entry of W i will describe the evolution of the
filter MSD.

When P and Ru have identical eigenvectors, e.g., as in LMS for which g[u] = 1 and
P = Ru, then the evolution of the learning curve of the filter can also be read from (1.37).
To see this, let λ be the column vector consisting of the eigenvalues of Ru. Choosing σ = λ
gives

‖wi‖2
σ = ‖wi‖2

λ = wT
i Λwi = w̃T

i Ruw̃i = ‖w̃i‖2
Ru

so that the EMSE behavior of the filter can be read from the top entry of the resulting
state-vector W i.

1.9 Applications to Selected Filters

We now illustrate the application of the results of the earlier sections, as well as some
extensions of these results, to selected adaptive filters.

1.9.1 The NLMS Algorithm

Our first example derives performance results for NLMS by showing how to relate it to LMS.
In NLMS, g[u] = ‖u‖2, and the filter recursion takes the form

wi = wi−1 + µ
uT

i

‖ui‖2
[d(i)− uiwi−1]
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Introduce the transformed variables:

ǔi =
ui

‖ui‖ , ď(i) =
d(i)

‖ui‖ , v̌(i) =
v(i)

‖ui‖ (1.40)

Then the NLMS recursion can be rewritten as

wi = wi−1 + µǔT
i ě(i)

with
ě(i) = ď(i)− ǔiwi−1

In other words, we find that NLMS can be regarded as an LMS filter with respect to the
variables {ď(i), ǔi}. Moreover, these variables satisfy a model similar to that of {d(i),ui},
as given by (1.1)–(1.2), viz.,

ď(i) = ǔiw
o + v̌(i)

where

(a) The sequence {v̌(i)} is iid with variance E v̌2(i) = σ̌2
v = σ2

vE

(
1

‖ui‖2

)
.

(b) The sequence v(i) is independent of uj for all i 6= j.

(c) The covariance matrix of ǔi is Řu = E ǔT
i ǔi = E

(
uT

i ui

‖ui‖2

)
> 0.

(d) The random variables {v̌(i), ǔi} are zero mean.

These conditions allow us to repeat the previous derivation of the variance and mean relations
(1.16)–(1.18) using the transformed variables (1.40). In this way, the performance of NLMS
can be deduced from that of LMS. In particular, from (1.35) we get for NLMS:

MSD ≈ µσ̌2
vM

2
=

µσ2
vM

2
E

(
1

‖ui‖2

)
(1.41)

and

lim
i→∞

E ě2
a(i) ≈

µσ̌2
vTr(Řu)

2
=

µσ̌2
v

2

since Tr(Řu) = 1, and where ěa(i) = ď(i)− ǔiwi−1. However, the filter EMSE relates to the
limiting value of Ee2

a(i) and not E ě2
a(i). To find this limiting value, we first note from the

definitions of ea(i) and ěa(i) that

1

‖ui‖2
· e2

a(i) = ě2
a(i)

Then if we introduce the steady-state separation assumption5

E

(
1

‖ui‖2
· e2

a(i)

)
≈ Ee2

a(i)

E‖ui‖2
as i −→∞

5The assumption is reasonable for longer filters.
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so that

lim
i→∞

Ee2
a(i) = Tr(Ru) ·

(
lim
i→∞

E ě2
a(i)

)

we get

EMSE =
µσ2

vTr(Ru)

2
E

(
1

‖ui‖2

)
(1.42)

An alternative method to evaluate the steady-state (as well as transient) performance
of NLMS is to treat it as a special case of the results developed in Sec. 1.8 by setting
g(u) = ‖u‖2. In this case, the variance relation (1.36) would become





E‖wi‖2
Σ

= E‖wi−1‖2

Σ
′ + µ2σ2

vE

[
‖ui‖2

Σ

‖ui‖4

]

Σ
′

= Σ− µΣ∆− µ∆Σ

Moreover, the EMSE and MSD expressions (1.33) and (1.34) would give

MSD =
µσ2

vTr(QP−1)

2

EMSE = µσ2
vTr(QΣemse)

(1.43)

where now

P = E

(
uT

i ui

‖ui‖2

)
, Q = E

(
uT

i ui

‖ui‖4

)

and Σemse is the unique solution of PΣemse+ΣemseP = Ru. Expressions (1.43) are alternatives
to (1.41) and (1.42).

1.9.2 The RLS Algorithm

Our second example pertains to the recursive least-squares algorithm:

wi = wi−1 + Pi uT
i [d(i)− uiwi−1], i ≥ 0 (1.44)

Pi = α−1

[
Pi−1 − α−1Pi−1u

T
i uiPi−1

1 + α−1uiPi−1uT
i

]
(1.45)

where the data {d(i),ui} satisfy (1.1)–(1.2), and the regressors satisfy the independence
assumption (1.15). In the above, 0 ¿ α ≤ 1 is a forgetting factor and P−1 = ε−1I for a
small positive ε.

Compared with the LMS-type recursion (1.3), the RLS update includes the matrix factor
Pi multiplying uT

i from the left. Moreover, Pi is a function of both current and prior
regressors. Still, the energy-conservation approach of Secs. 1.3–1.4 can be extended to deal
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with this more general case. In particular, it is straightforward to verify that (1.10) is now
replaced by

‖ui‖2
PiΣPi

· ‖w̃i‖2
Σ + (ePiΣ

a (i))2 = ‖ui‖2
PiΣPi

· ‖w̃i−1‖2
Σ + (ePiΣ

p (i))2 (1.46)

Under expectation, (1.46) leads to

E‖w̃i‖2
Σ = E‖w̃i−1‖2

Σ′ + σ2
vE‖ui‖2

PiΣPi

Σ′ = Σ − ΣE(Piu
T
i ui) − E(uT

i uiPi)Σ + E
[‖ui‖2

PiΣPi
uT

i ui

] (1.47)

However, the presence of the matrix Pi makes the subsequent analysis rather challenging;
this is because Pi is dependent not only on ui but also on all prior regressors {uj, j ≤ i}.

In order to make the analysis more tractable, whenever necessary, we shall approximate
and replace the random variable Pi in steady-state by its respective mean value.6 Now since

P−1
i = αi+1εI +

i∑
j=0

αi−ju∗juj

we find that, as i →∞, and since α < 1,

lim
i→∞

E
(
P−1

i

)
=

Ru

1− α
∆
= P−1

That is, the mean value of P−1
i tends to Ru/(1 − α). In comparison, the evaluation of the

limiting mean value of Pi is generally harder. For this reason, we shall content ourselves
with the approximation

EPi ≈
[
EP−1

i

]−1
= (1− α)R−1

u = P, as i →∞

This is an approximation, of course, because even though Pi and P−1
i are the inverses of one

another, it does not hold that their means will have the same inverse relation.7

Replacing Pi by P = (1− α)R−1
u , we find that the variance relation (1.47) becomes

E‖w̃i‖2
Σ = E‖w̃i−1‖2

Σ′ + σ2
v(1− α)2E‖ui‖2

R−1
u ΣR−1

u

Σ′ = Σ − 2(1− α)Σ + (1− α)2E
[
‖ui‖2

R−1
u ΣR−1

u
uT

i ui

]

Introduce the eigen-decomposition Ru = UΛUT , and define the transformed variables

wi
∆
= UT w̃i, ui

∆
= uiU, Σ

∆
= UT ΣU

6This approximation essentially amounts to an ergodicity assumption on the regressors.
7It turns out that the approximation is reasonable for Gaussian regressors.
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Assume further, for the sake of illustration, that the regressors {ui} are Gaussian. Then

E
[‖ui‖2

Λ−1ΣΛ−1u
T
i ui

]
= 2ΛTr(Λ−1Σ) + Σ

and the variance relation becomes

E‖wi‖2
Σ

= E‖wi−1‖2

Σ
′ + σ2

v(1− α)2E‖ui‖2
Λ−1ΣΛ−1

Σ
′
= α2Σ + 2(1− α)2ΛTr(Λ−1Σ)

It follows that Σ
′
will be diagonal if Σ is. If we further introduce the M−dimensional column

vectors

λ = diag{Λ}, a = diag{Λ−1}, σ = diag{Σ}

then the above recursion for Σ
′
is equivalent to

σ′ = Fσ where F = α2I + 2(1− α)2λaT

Let Σmsd denote the weighting matrix that corresponds to the vector

σmsd = (I − F )−1diag(I)

Let also Σemse denote the weighting matrix that corresponds to the vector

σemse = (I − F )−1λ

Then since

MSD = σ2
v(1− α)2E‖ui‖2

Λ−1ΣmsdΛ−1

EMSE = σ2
v(1− α)2E‖ui‖2

Λ−1ΣemseΛ−1

we can verify after some algebra that

MSD =
σ2

v

∑M
k=1(1/λk)

1+α
1−α

− 2M

EMSE =
σ2

vM
1+α
1−α

− 2M

(1.48)
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1.9.3 Leaky-LMS

Our third example extends the energy-conservation and variance relations of Secs. 1.3 and 1.4
to leaky-LMS updates of the form:

wi = (1− µα)wi−1 + µuT
i e(i), i ≥ 0

e(i) = d(i)− uiwi−1

where α is a positive scalar. The data {d(i),ui} are still assumed to satisfy (1.1)–(1.2), with
the regressors satisfying the independence assumption (1.15).

Repeating the arguments of Secs. 1.3–1.4, it is straightforward to verify that the variance
and mean relations (1.16)–(1.18) extend to the following (see [17]):

E‖w̃i‖2
Σ = E‖w̃i−1‖2

Σ′ + µ2σ2
vE‖ui‖2

Σ + 2αµ (wo)T ΣJEw̃i−1 + α2µ2‖wo‖2
Σ

Σ′ = Σ− µ
(
EUi

)
Σ− µΣ

(
EUi

)
+ µ2E

(
UiΣUi

)

Ew̃i = JEw̃i−1 + αµwo

where
Ui = αI + uT

i ui, J = E(I − µUi) = (1− αµ)I − µRu

Frequently w−1 = 0, so that E w̃−1 = wo. We will make this assumption to simplify the
analysis, although it is not necessary for stability or steady-state results.

Therefore, by iterating the recursion for Ew̃i we can verify that

Ew̃i−1 = Ciw
o, i ≥ 0

where
Ci = J i + αµ(I + J + . . . + J i−1)

It then follows that the term below, which appears in the recursion for E‖w̃i‖2
Σ, can be

expressed in terms of ‖wo‖2 as

2αµ (wo)T ΣJEw̃i−1 = αµ‖wo‖2
ΣJCi+CiJΣ

Now repeating the arguments of Sec. 1.5 we can verify that the transient behavior of the
leaky filter is characterized by the following state-space model:

Wi = FWi−1 + µYi

where Wi is the M2−dimensional vector

Wi
∆
=




E‖w̃i‖2
σ

E‖w̃i‖2
Fσ

E‖w̃i‖2
F 2σ

...
E‖w̃i‖2

F M2−1σ
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and F is the M2 ×M2 companion matrix

F =




0 1
0 0 1
0 0 0 1
...
0 0 0 1
−p0 −p1 −p2 . . . −pM2−1




with

p(x)
∆
= det(xI − F ) = xM2

+
M2−1∑

k=0

pkx
k

denoting the characteristic polynomial of the matrix

F = I − µA + µ2B

where

A = (EUi ⊗ I) + (I ⊗ EUi)

B = E(Ui ⊗Ui)

Moreover,

Yi = µσ2
v




E |ui‖2
σ

E‖ui‖2
Fσ

E‖ui‖2
F 2σ

...
E‖ui‖2

F M2−1σ




+ α




‖wo‖2
(αµI+Si)σ

‖wo‖2
(αµI+Si)Fσ

‖wo‖2
(αµI+Si)F 2σ

...
‖wo‖2

(αµI+Si)F M2−1σ




where Si is the M2 ×M2 matrix

Si
∆
= (JCi ⊗ IM) + (IM ⊗ CiJ)

It follows that the filter is stable in the mean and mean-square senses for step-sizes in
the range

µ < min

{
2

α + λmax(Ru)
,

1

λmax(A−1B)
,

1

max
{
λ(H) ∈ IR+

}
}

where

H =

[
A/2 −B/2
I 0

]

It also follows that in steady-state,
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limi→∞ Ew̃i = α(αI + Ru)
−1wo

MSD = µ2σ2
vE

(
‖ui‖2

(I−F )−1vec(I)

)
+ α2µ2‖wo‖2

T (I−F )−1vec(I)

EMSE = µ2σ2
vE

(
‖ui‖2

(I−F )−1vec(Ru)

)
+ α2µ2‖wo‖2

T (I−F )−1vec(Ru)

(1.49)

where T is the M2 ×M2 matrix

T = I +
(
(I − J)−1J ⊗ I

)
+

(
I ⊗ (I − J)−1J

)

1.10 Fourth-Order Moment Approximation

Instead of the small-step size approximation of Sec. 1.8, we can choose to approximate the
fourth-order moment that appears in the expression for Σ′ in (1.17) as

E

(‖ui‖2
Σ

g2[ui]
uT

i ui

)
≈ E

(
uT

i ui

g[ui]

)
· E

(‖ui‖2
Σ

g[ui]

)
= PTr(ΣP )

where P = E(uT
i ui/g[ui]). In this way, expression (1.17) for Σ′ would become

Σ′ = Σ − µΣP − µPΣ + µ2PTr(PΣ) (1.50)

which is fully characterized in terms of the single moment P . If we now let P = U∆UT

denote the eigen-decomposition of P > 0, and introduce the transformed quantities:

wi = UT w̃i, ui = uiU, Σ = UT ΣU

Then the variance relations (1.16) and (1.50) can be equivalently rewritten as

E‖wi‖2
Σ

= E‖wi−1‖2

Σ
′ + µ2σ2

vE

(‖ui‖2
Σ

g2[ui]

)

Σ
′
= Σ − µΣ∆ − µ∆Σ + µ2∆Tr(Σ∆)

(1.51)

The expression for Σ
′
shows that it will be diagonal as long as Σ is diagonal. Thus let again

σ = diag(Σ), σ′ = diag(Σ
′
)

Then from (1.51) we find that
σ′ = Fσ

where F is M ×M and given by

F = I − µA + µ2B, A = 2∆, B = µ2δδT

where δ = diag(∆). Repeating the arguments that led to (1.22) we can establish that, under
the assumed fourth-order moment approximation, the evolution of E‖wi‖2

σ is described by
an M−dimensional state-space model similar to (1.37).
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1.11 Long Filter Approximation

In addition to the small step-size and fourth-order moment approximations of Secs. 1.8
and 1.10, we can also resort to a long filter approximation and derive simplified transient and
steady-state performance results for data-normalized filters of the form (1.3). We postpone
this discussion until Sec. 1.12.5, whereby the simplified results will be obtained as a special
case of the theory we develop below for adaptive filters with error nonlinearities.

1.12 Adaptive Filters with Error Nonlinearities

The analysis in the earlier sections focused on data-normalized adaptive filters of the form
(1.3). We now extend the energy-based arguments to filters with error nonlinearities in their
update equations. This class of filters is usually more challenging to study. For this reason,
we shall resort to a long filter assumption in order to make the analysis more tractable, as
we explain in the sequel.

Thus consider filter updates of the form

wi = wi−1 + µuT
i f [e(i)], i ≥ 0 (1.52)

where
e(i) = d(i)− uiwi−1 (1.53)

is the estimation error at iteration i, and f is some function of e(i). Typical choices for f
are

f [e] = e (LMS), f [e] = sign(e) (sign-LMS), f [e] = e3 (LMF)

The initial condition w−1 of (1.52) is assumed to be independent of all {d(j),uj,v(j)}.
The same argument that was employed in Sec. 1.3 can be repeated here to verify that

the energy relation (1.10) still holds. Indeed, subtracting wo from both sides of (1.52) we get

w̃i = w̃i−1 − µuT
i f [e(i)] (1.54)

and multiplying (1.54) by uiΣ from the left we find that

eΣ
p (i) = eΣ

a (i)− µ‖ui‖2
Σf [e(i)] (1.55)

Relation (1.55) can be used to express f [e(i)] in terms of {eΣ
p (i), eΣ

a (i)} and to eliminate it
from (1.54). Doing so leads to the equality

‖ui‖2
Σ · w̃i + uT

i eΣ
a (i) = ‖ui‖2

Σ · w̃i−1 + uT
i eΣ

p (i) (1.56)

and by equating the weighted Euclidean norms of both sides of this equation we arrive again
at (1.10), which is repeated here for ease of reference,

‖ui‖2
Σ · ‖w̃i‖2

Σ +
(
eΣ

a (i)
)2

= ‖ui‖2
Σ · ‖w̃i−1‖2

Σ +
(
eΣ

p (i)
)2

(1.57)
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1.12.1 Variance Relation For Error Nonlinearities

Now recall that in transient analysis we are interested in characterizing the time evolution
of the quantity E‖w̃i‖2

Σ, for some Σ of interest (usually, Σ = I or Σ = Ru). To characterize
this evolution, we replace eΣ

p (i) in (1.57) by its expression (1.55) in terms of eΣ
a (i) and e(i)

to get

‖ui‖2
Σ · ‖w̃i‖2

Σ = ‖ui‖2
Σ · ‖w̃i−1‖2

Σ + µ2
(‖ui‖2

Σ

)2
f 2[e(i)] − 2µ‖ui‖2

ΣeΣ
a (i)f [e(i)]

Assuming the event ‖ui‖2
Σ = 0 occurs with zero probability, we can eliminate ‖ui‖2

Σ from
both sides and take expectations to arrive at:

E‖w̃i‖2
Σ = E‖w̃i−1‖2

Σ − 2µE
(
eΣ

a (i)f [e(i)]
)

+ µ2E (‖ui‖2
Σf 2[e(i)]) (1.58)

which is the equivalent of (1.13) for filters with error nonlinearities. Observe, however,
that the weighting matrix for E‖w̃i‖2

Σ and E‖w̃i−1‖2
Σ are still identical since we did not

substitute {ea(i), e(i)} by their expressions in terms of w̃i−1. The reason we did not do so
here is because of the nonlinear error function f . Instead, to proceed, we shall show how to
evaluate the expectations

E
(
eΣ

a (i)f [e(i)]
)

and E
(‖ui‖2

Σf 2[e(i)]
)

(1.59)

These expectations are generally hard to compute because of f . In order to facilitate their
evaluation, we shall assume that the filter is long enough in order to justify, by central limit
theorem arguments, that

ea(i) and eΣ
a (i) are jointly Gaussian random variables (1.60)

Evaluation of E
(
eΣ

a f [e]
)

Using (1.60) we can evaluate the first expectation, E
(
eΣ

a (i)f [e(i)]
)
, by appealing to Price’s

theorem [14]. The theorem states that if x and y are jointly Gaussian random variables that
are independent from a third random variable z, then

Exk(y + z) =
Exy

Ey2
Eyk(y + z)

where k(·) is some function of y + z. Using this result, together with the equality e(i) =
ea(i) + v(i), we get

EeΣ
a (i)f [e(i)] = EeΣ

a (i)ea(i)
Eea(i)f [e(i)]

Ee2
a(i)

∆
=

(
EeΣ

a (i)ea(i)
) · hG

where the function hG is defined by

hG
∆
=

Eea(i)f [e(i)]

Ee2
a(i)

(1.61)
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Clearly, since ea(i) is Gaussian, the expectation Eea(i)f [e(i)] depends on ea(i) only through
its second moment, Ee2

a(i). This means that hG itself is only a function of Ee2
a(i). The

function hG[·] can be evaluated for different choices of the error nonlinearity f [·], as shown
in Tab. 1.1.

Evaluation of E (‖ui‖2
Σf 2[e])

In order to evaluate the second expectation, E (‖ui‖2
Σf 2[e(i)]), we resort to a separation

assumption, viz., we assume that the filter is long enough so that

‖ui‖2
Σ and f 2[e(i)] are uncorrelated (1.62)

This assumption allows us to write

E
(‖ui‖2

Σf 2[e(i)]
)

=
(
E‖ui‖2

Σ

) · (Ef 2[e(i)]
) ∆

=
(
E‖ui‖2

Σ

) · hU

where the function hU is defined by

hU
∆
= Ef 2[e(i)] (1.63)

Again, since ea(i) is Gaussian and independent of the noise, the function hU is a function
of Ee2

a(i) only. The function hU can also be evaluated for different error nonlinearities, as
shown in Tab. 1.1.

Table 1.1: Expressions for hG and hU for some error nonlinearities. In the least-mean-fourth
(LMF) case, we assume Gaussian noise for simplicity.

Algorithm Error nonlinearity {hG, hU}

LMS f [e] = e
hG = 1
hU = Ee2

a(i) + σ2
v

sign-LMS f [e] = sign[e]
hG =

√
2
π

1√
Ee2

a(i) + σ2
v

hU = 1

LMF f [e] = e3 hG = 3(Ee2
a(i) + σ2

v)
hU = 15

(
Ee2

a(i) + σ2
v)

3
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1.12.2 Independent Regressors

Using the definitions of hU and hG, we can rewrite the variance relation (1.58) more compactly
as

E‖w̃i‖2
Σ = E‖w̃i−1‖2

Σ − 2µhGE
(
eΣ

a (i)ea(i)
)

+ µ2hUTr(RuΣ) (1.64)

As it stands, this relation is still hard to propagate since it requires the evaluation of
EeΣ

a (i)ea(i), and this expectation is not trivial in general. This is because of possible depen-
dencies among the successive regressors {ui}. However, if we again resort to the independence
assumption (1.15), then it is easy to verify that

EeΣ
a (i)ea(i) = E‖w̃i−1‖2

ΣRu

so that (1.64) becomes

E‖w̃i‖2
Σ = E‖w̃i−1‖2

Σ − 2µhGE‖w̃i−1‖2
ΣRu

+ µ2hUTr(RuΣ) (1.65)

We now illustrate the application of this result by considering two cases separately. We
start with the simpler case of white input data followed by correlated data.

1.12.3 White Regression Data

Assume first that Ru = σ2
uI and select Σ = I. Then (1.65) becomes

E‖w̃i‖2 = E‖w̃i−1‖2 − 2µhGσ2
uE‖w̃i−1‖2 + µ2Mσ2

uhU (1.66)

Note that all terms on the right-hand side are dependent on E‖w̃i−1‖2 only; this is because
hG and hU are functions of Ee2

a(i) and, for white input data, Ee2
a(i) = σ2

uE‖w̃i−1‖2. We
therefore find that recursion (1.66) characterizes the evolution of E‖w̃i‖2. Two special cases
help demonstrate this fact.

Transient Behavior of LMS

When f [e] = e we obtain the LMS algorithm,

wi = wi−1 + µuT
i e(i) (1.67)

Using the following expressions from Tab. 1.1,

hU = σ2
uE‖w̃i−1‖2 + σ2

v , hG = 1

we obtain
E‖w̃i‖2 =

(
1− 2µσ2

u + µ2σ4
uM

)
E‖w̃i−1‖2 + µ2Mσ2

uσ
2
v (1.68)

which is a linear recursion in E‖w̃i‖2; it characterizes the transient behavior of LMS for
white input data.
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Transient Behavior of sign-LMS

When f [e] = sign(e) we obtain the sign-LMS algorithm,

wi = wi−1 + µuT
i sign[e(i)] (1.69)

Using the following expressions from Tab. 1.1,

hU = 1, hG =

√
2

π

1√
σ2

uE‖w̃i−1‖2 + σ2
v

we obtain

E‖w̃i‖2 =

(
1−

√
8

π

µσ2
u√

σ2
uE‖w̃i−1‖2 + σ2

v

)
E‖w̃i−1‖2 + µ2Mσ2

u (1.70)

which is now a nonlinear recursion in E‖w̃i‖2; it characterizes the transient behavior of
sign-LMS for white input data.

Transient Behavior of LMF

When f [e] = e3 we obtain the LMF algorithm,

wi = wi−1 + µuT
i e3(i) (1.71)

Using the following expressions from Tab. 1,

hG = 3
(
E |ea(i)|2 + σ2

v

)
, hU = 15

(
E |ea(i)|2 + σ2

v

)3

we get

E‖w̃i‖2 = fE‖w̃i−1‖2 + 15µ2Mσ2
uσ

6
v (1.72)

where

f =
[
1 + µσ2

uσ
2
v(45µMσ2

uσ
2
v − 2) + µσ4

u(45µMσ2
uσ

2
v − 2)

]
E‖w̃i−1‖2 + 15µ2σ8

uM
(
E‖w̃i−1‖2

)2

which is a nonlinear recursion in E‖w̃i‖2; it characterizes the transient behavior of LMF for
white input data.

1.12.4 Correlated Regression Data

When the input data is correlated, different weighting matrices will appear on both sides of
the variance relation (1.65). Indeed, writing (1.65) for Σ = I yields

E‖w̃i‖2 = E‖w̃i−1‖2 − 2µhGE‖w̃i−1‖2
Ru

+ µ2Tr(Ru) · hU
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with the weighted term E‖w̃i−1‖2
Ru

. This term can be deduced from (1.65) by writing it for
Σ = Ru, which leads to

E‖w̃i‖2
Ru

= E‖w̃i−1‖2
Ru

− 2µhGE‖w̃i−1‖2
R2

u
+ µ2hUTr(R2

u)

with the weighted term E‖w̃i‖2
R2

u
. This term can in turn be deduced from (1.65) by writing

it for Σ = R2
u. Continuing in this fashion, for successive powers of Ru, we arrive at

E‖w̃i‖2
RM−1

u
= E‖w̃i−1‖2

RM−1
u

− 2µhGE‖w̃i−1‖2
RM

u
+ µ2hUTr(RM

u )

As before, this procedure terminates. To see this, let p(x) = det(xI − Ru) denote the
characteristic polynomial of Ru, say

p(x) = xM + pM−1x
M−1 + pM−2x

M−2 + . . . + p1x + p0

Then, since p(Ru) = 0 in view of the Cayley-Hamilton theorem, we have

E‖w̃i‖2
RM = −p0E‖w̃i‖2 − p1E‖w̃i‖2

Ru
− . . . − pM−1E‖w̃i‖2

RM−1
u

This result indicates that the weighted term E‖w̃i‖2
RM is fully determined by the prior

weighted terms.
Putting these results together, we find that the transient behavior of the filter (1.52) is

now described by a nonlinear M−dimensional state-space model of the form

Wi = FWi−1 + µ2hUY (1.73)

where the M × 1 vectors {Wi,Y} are defined by

Wi
∆
=




E‖w̃i‖2

E‖w̃i‖2
Ru

...
E‖w̃i‖2

RM−2
u

E‖w̃i‖2
RM−1

u




, Y ∆
=




Tr(Ru)
Tr(R2

u)
...

Tr(RM−1
u )

Tr(RM
u )




(1.74)

and the M ×M coefficient matrix F is given by

F ∆
=




1 −2µhG

0 1 −2µhG

0 0 1 −2µhG
...
0 0 1 −2µhG

2µp0hG 2µp1hG . . . 2µpM−2hG 1 + 2µpM−1hG




The evolution of the top entry of Wi describes the mean-square deviation of the filter,
E‖w̃i‖2, while the evolution of the second entry of Wi relates the learning behavior of the
filter since

Ee2(i) = Ee2
a(i) + σ2

v = E‖w̃i−1‖2
Ru

+ σ2
v
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1.12.5 Long Filter Approximation

The earlier results on filters with error nonlinearities can be used to provide an alternative
simplified analysis of adaptive filters with data nonlinearities as in (1.3); just like we did in
Secs. 1.8 and 1.10 by resorting to simplifications that resulted from the small step-size and
fourth-order moment approximations.

Indeed, starting from (1.10), substituting eΣ
p (i) in terms of {eΣ

a (i), e(i)} from (1.8), and
taking expectations, we arrive at the variance relation

E‖w̃i‖2
Σ = E‖w̃i−1‖2

Σ − 2µE

(
eΣ

a (i)e(i)

g[ui]

)
+ µ2E

(‖ui‖2
Σe2(i)

g2[ui]

)
(1.75)

This relation is equivalent to (1.13), except that in (1.13) we proceeded further and expressed
the terms eΣ

a (i)e(i) and e2(i) as weighted norms of w̃i−1. Relation (1.75) has the same form
as the variance relation (1.58) used for filters with error nonlinearities. Observe in particular
that the function e/g[u] in data-normalized filters plays the role of f [e] in nonlinear error
filters.

Now by following the arguments of Sec. 1.12.1, and under the following assumptions:

ea(i) and eΣ
a (i) are jointly Gaussian random variables.

‖ui‖2
Σ and g[ui] are independent of e(i).

The regressors ui are independent and identically distributed.

(1.76)

we can evaluate the expectations

E

(
eΣ

a (i)e(i)

g[ui]

)
and E

(‖ui‖2
Σe2(i)

g2[ui]

)

and conclude that the variance relation (1.75) reduces to

E‖w̃i‖2
Σ = E‖w̃i−1‖2

Σ − 2µhGE
(
eΣ

a (i)ea(i)
)

+ µ2E

(‖ui‖2
Σ

g2[ui]

)
(Ee2

a(i) + σ2
v)

where now

hG
∆
=

E
(
e2

a(i)/g[ui]
)

Ee2
a(i)

= E

(
1

g[ui]

)
(1.77)

in view of the independence assumptions in (1.76).
If we again use Ee2

a(i) = E‖w̃i−1‖Ru , then we arrive at

E‖w̃i‖2
Σ = E‖w̃i−1‖2

Σ − µhGE‖w̃i−1‖2
ΣRu+RuΣ + µ2E

(‖ui‖2
Σ

g2[ui]

)
(E‖w̃i−1‖2

Ru
+ σ2

v)

(1.78)
which is the extension of (1.65) to data-normalized filters. We now illustrate the application
of this result to the transient analysis of some data-normalized adaptive filters.
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White Regression Data

Assume first that Ru = σ2
uI and select Σ = I. Then (1.78) becomes

E‖w̃i‖2 =

(
1− 2µσ2

uhG + µ2σ2
uE

(‖ui‖2

g2[ui]

))
E‖w̃i−1‖2 + µ2σ2

vE

(‖ui‖2

g2[ui]

)
(1.79)

For the special case of LMS, when g[u] = 1, hG in (1.77) becomes hG = 1 and (1.79) reduces
to

E‖w̃i‖2 =
(
1− 2µσ2

u + µ2σ4
uM

)
E‖w̃i−1‖2 + µ2Mσ2

uσ
2
v (1.80)

This is the same recursion we obtained before for LMS when trained with white input data.
For the special case of NLMS, g[u] = ‖u‖2, and relation (1.79) reduces to

‖w̃i‖2 =

(
1− 2µσ2

uE

(
1

‖ui‖2

)
+ µ2σ2

uE

(
1

‖ui‖2

))
E‖w̃i−1‖2 + µ2σ2

vE

(
1

‖ui‖2

)

(1.81)

Correlated Regression Data

When the input data are correlated, different weighting matrices will appear on both sides
of the variance relation (1.78). Indeed, writing (1.78) for Σ = I yields

E‖w̃i‖2 = E‖w̃i−1‖2 − 2µhGE‖w̃i−1‖2
Ru

+ µ2E

(‖ui‖2

g2[ui]

)
(E‖w̃i−1‖2

Ru
+ σ2

v)

with the weighted term E‖w̃i−1‖Ru . This term can be deduced from (1.78) by writing it for
Σ = Ru, which leads to

E‖w̃i‖2
Ru

= E‖w̃i−1‖2
Ru

− 2µhGE‖w̃i−1‖2
R2

u
+ µ2E

(‖ui‖2
Ru

g2[ui]

)
(E‖w̃i−1‖2

Ru
+ σ2

v)

with the weighted term E‖w̃i‖2
R2

u
and so forth. The procedure terminates and leads to the

following state-space model:

Wi =
(F + µ2YeT

2

)Wi−1 + µ2σ2
vY (1.82)

where the M × 1 vectors {Wi,Y} are defined by

Wi
∆
=




E‖w̃i‖2

E‖w̃i‖2
Ru

...
E‖w̃i‖2

RM−2
u

E‖w̃i‖2
RM−1

u




, Y ∆
=




E
(‖ui‖2/g2[ui]

)
E

(‖ui‖2
Ru

/g2[ui]
)

...
E

(‖ui‖2
RM−2

u
/g2[ui]

)

E
(‖ui‖2

RM−1
u

/g2[ui]
)




(1.83)
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the M ×M matrix F is given by

F ∆
=




1 −2µhG

0 1 −2µhG

0 0 1 −2µhG
...
0 0 1 −2µhG

2µp0hG 2µp1hG . . . 2µpM−2hG 1 + 2µpM−1hG




and
e2 = col{0, 1, 0, . . . , 0}

Also,

hG = E

(
1

g[ui]

)

The evolution of the top entry of Wi describes the mean-square deviation of the filter,
E‖w̃i‖2, while the evolution of the second entry of Wi relates to the learning behavior of the
filter. The model (1.82) is an alternative to (1.22) for adaptive filters with data nonlinearities;
it is based on assumptions (1.76).

Steady-State Performance

The variance relation (1.78) can also be used to approximate the steady-state performance
of data-normalized adaptive filters. Writing it for Σ = I,

E‖w̃i‖2 = E‖w̃i−1‖2 − 2µhGE‖w̃i−1‖2
Ru

+ µ2E

(‖ui‖2

g2[ui]

)
(E‖w̃i−1‖2

Ru
+ σ2

v) (1.84)

and setting, in steady-state,

lim
i→∞

E‖w̃i‖2 = lim
i→∞

E‖w̃i−1‖2

we obtain

0 = −2µE

(
1

g[ui]

)
EMSE + µ2E

(‖ui‖2

g2[ui]

)
(EMSE + σ2

v)

so that the excess mean-square error, Ee2
a(∞), is given by

EMSE =
µσ2

vTr(Q)

2E
(
1/g[ui]

)− µTr(Q)
(1.85)

where Q = E
(
uT

i ui/g
2[ui]

)
. For LMS we have g[u] = 1 and Q = Ru, and the above

expression reduces to

EMSE =
µσ2

vTr(Ru)

2− µTr(Ru)
(LMS)
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For NLMS we have g[u] = ‖u‖2 and Q = E
(
uT

i ui/‖ui‖4
)
, so that

EMSE ≈ µσ2
v

2− µ
(NLMS)

Stability

The recursion (1.84) can be rearranged as

E‖w̃i‖2 = E‖w̃i−1‖2 + µ (µTr(Q)− 2hG) E‖w̃i−1‖2
Ru

+ µ2σ2
vTr(Q)

It is now easy to see that E‖w̃i‖2 converges for step-sizes satisfying

µTr(Q)− 2hG < 0

or, equivalently,

0 < µ <
2hG

Tr(Q)
= 2E

(
1

g[ui]

)
1

Tr(Q)

For LMS, this simplified analysis results in the condition µ < 2/Tr(Ru). For NLMS, Tr(Q) =
E(1/‖ui‖2) and the condition on µ becomes µ < 2.

1.13 An Interpretation of the Energy Relation

We end our discussions in this chapter by making a connection between the energy relation
(1.10) and Snell’s law of optics. We reconsider (1.10) and assume first that Σ = I so that

‖ui‖2 · ‖w̃i‖2 + e2
a(i) = ‖ui‖2 · ‖w̃i−1‖2 + e2

p(i) (1.86)

Let θi denote the acute angle between the column vectors {w̃i,u
T
i }. Likewise, let θi−1 denote

the acute angle between {w̃i−1,u
T
i }. Then

e2
a(i) = ‖ui‖2 · ‖w̃i−1‖2 · cos2(θi−1), and e2

p(i) = ‖ui‖2 · ‖w̃i‖2 · cos2(θi)

Substituting into (1.86) and collecting terms we find that it reduces to

‖w̃i−1‖2 sin2(θi−1) = ‖w̃i‖2 sin2(θi) (1.87)

Equality (1.87) resembles a famous result in optics, known as Snell’s law, which relates
the refraction indices of two mediums with the sines of the incident and refracted rays of
light, viz.,

η1 sin θ1 = η2 sin θ2

where θ1 and θ2 are the angles of incidence and refraction, respectively; both angles are
measured relative to the direction that is orthogonal to the surface separating both mediums.
This analogy suggests that we can relate the operation of an adaptive filter, at each iteration,
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Figure 1.1: An interpretation of the energy-conservation relation (1.10) by means of an
analogy with Snell’s law in optics.

to that of a fictitious ray travelling from one medium to another. The magnitudes ‖w̃i−1‖
and ‖w̃i‖ play the role of refraction indices of the mediums, while {θi−1, θi} play the role
of the incidence and refraction angles of the ray. Alternatively, we can interpret the result
(1.87) as shown in Fig. 1.1. An incident vector of norm ‖w̃i−1‖ impinges on the separation
layer at an angle θi−1 with respect to uT

i , while a refracted vector of norm ‖w̃i‖ leaves the
layer at an angle θi, also with respect to uT

i . Relation (1.87) then amounts to saying that
the projections of these vectors along the horizontal direction should have equal norms.

More generally, when a positive-definite weighting matrix Σ is present in (1.10), we let
{θi, θi−1} denote acute angles whose squared cosines are given by

cos2
Σ(θi−1)

∆
=

(
eΣ

a (i)
)2

‖w̃i−1‖2
Σ · ‖ui‖2

Σ

, cos2
Σ(θi)

∆
=

(
eΣ

p (i)
)2

‖w̃i‖2
Σ · ‖ui‖2

Σ

(1.88)

The subscript Σ in cosΣ(·) indicates that a weighting matrix Σ is used in computing it. With
this notation, it is straightforward to verify that the energy-relation (1.57) becomes

‖w̃i−1‖2
Σ sin2

Σ(θi−1) = ‖w̃i‖2
Σ sin2

Σ(θi) (1.89)

which is a natural extension of (1.87).

1.14 Concluding Remarks

This chapter describes an energy-conservation approach to studying the performance of
adaptive filters. By studying the energy balance at each iteration, the dynamic behavior of
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an adaptive filter can be characterized in terms of a variance relation (e.g., (1.16), (1.64),
and (1.65)) and, subsequently, in terms of a state-space model (e.g., (1.22) and (1.73)).
The approach does not restrict the input data to Gaussian or white distributions. Besides
providing information about the stability and convergence behavior of the filter, the energy-
conservation arguments also help characterize the steady-state performance of the filter.
While the analysis in this chapter relied on the independence assumption (1.15), steady-
state results can be obtained without relying on this assumption (see, e.g., [10, 11]).
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