King Fahd University of Petroleum \& Minerals
 Electrical Engineering Department EE 207 - Signals and Systems

Major I

November 18, 2008

Time Allowed 1 ½ Hours

Student Name \qquad Key \qquad
Student ID Number : \qquad 0 \qquad

Problem	Max Score	Score
Problem 1	10	
Problem 2	10	
Problem 3	10	
Total	30	

Problem 1:

a. (3 marks) Express the given signal in terms of singularity functions

b. (3 marks) For the signal $g(t)$ shown in the Figure below, sketch the signal $10 g(4-2 t)$. Show all the steps.

c. (4 marks) A given system is described by the following relation,
$y(t)=x^{4}(t+2)+5 t$ where $x(t)$ is the input signal and $y(t)$ is the output signal.
Classify the above system as to linearity, causality, and time invariance (justify your answer).

Problem 2:

a. (2 marks) The impulse response of a LTI system is given by: $h(t)=\left(\frac{1}{\tau_{o}}\right) e^{-t / \tau_{o}} u(t)$, find the step response $a(t)$ [i.e. the response due to a unit step input $x(t)=u(t)$].
b. (3 marks) Now consider the following input signal $x(t)$:

Find the output signal when the input is $x(t)$ above.
[Hint: It is useful to consider the answer to part (a)].
c. (5 marks) Determine the convolution $y(t)$ of the following 2 signals, and plot it. Show all your work in details.

Problem 3:

A periodic signal $x(t)$ is shown below.

a. (2 marks) Determine the fundamental period T_{0} and fundamental frequency f_{0} of the signal $\mathrm{x}(\mathrm{t})$
b. (5 marks) Determine the Trigonometric Fourier Series representation of $x(t)$ (show your work)
c. (3 marks) Determine the power and the energy of the signal $x(t)$.

KEY
EE207-081
Problem 1:
1 point foushre
a) $\quad 2 r(t+1)-2 r(t)+u(t)-3 u(t-3)$
\leftarrow one possible solution
note $r(2 t)=2 r(t)$
not true in general.
b) $10 \mathrm{~g}(4-2 t) \equiv 10 \mathrm{~g}[-2(t-2)]$

There are four operations.
(1) amplitude scaling by 10

$$
10 g^{(t)}
$$

(2) Tine compression by a factor of 2 .

$$
6 \rightarrow 3 \quad 12 \rightarrow 6
$$

(3) Time inversion.

(4) Time shifting by 2 units to the right.

we can check the time operation by

$$
\begin{aligned}
& \text { check the time operation by } \\
& t^{\prime}=4-2 t \Rightarrow t-4=-2 t \Rightarrow t=2-\frac{t^{\prime}}{2}
\end{aligned}
$$

t^{\prime}	6	12
t	-1	-4

time point $6 \longrightarrow-1$
time point $12 \rightarrow-4$
c). The system is not linear
be causes it is proportional to the fourth power of $x(t)$

$$
x_{1}^{4}+x_{2}^{4} \neq\left(x_{1}+x_{2}\right)^{4}
$$

- The system is not causal because for Ena-plle The output y at $t=1 \mathrm{~s}$ depends on the input at $t=3 \mathrm{sec}$.
- The sys, is time variant because the relation changes with time due to the expect time term $5 t$
ot $t=1$ sec. $y(t)=x^{4}(t+2)+5<$ The relation is not the save at $t=2 \mathrm{se}$

$$
\begin{aligned}
& y(t)=x(t)=x^{4}(t+2)+10 \\
& y(t)
\end{aligned}
$$ hence time varying.

Problem 2:
a) for LTI

$$
a(t)=\int_{-\infty}^{t} h(r) d r
$$

$$
\begin{aligned}
a(t) & =\int_{-\infty}^{t}\left(\frac{1}{\tau_{0}}\right) e^{-\tau / \tau_{0}} u(\tau) d \tau \quad u(t) \rightarrow a(t) \\
& =\frac{1}{\tau_{0}} \int_{0}^{t} e^{-\tau / \tau_{0}} d \tau=-\left.\frac{\tau_{0}}{\tau_{0}} e^{-\tau / \tau_{0}}\right|_{0} ^{t}=-\left[e^{-t / \tau_{0}}-1\right] \quad \text { for } t>0 \\
& =1-e^{-t / \tau_{0}} \quad t>0 \\
\Rightarrow a(t) & =\left(1-e^{-t / \tau_{0}}\right) u(t)
\end{aligned}
$$

b) $x(t)=u(t)-2 u(t-1)+u(t \mp 2)$

Since the system is linear.

$$
\begin{aligned}
& \text { Since the system is linear. } \\
& y(t)=\left(1-e^{-t / \tau_{0}}\right) u(t)-2\left(1-e^{-(t-1) / \tau}\right) u(t-1)+\left(1-e^{-\left(t^{-2}\right) / r_{0}} u(t-2)\right.
\end{aligned}
$$

r)

Case I
$t<0$ no overlap (1)

$$
\begin{aligned}
x(t) * h(t) & =\left\{\begin{array}{ll}
0 & t<0 \\
\frac{2}{3}\left[1-e^{-3 t}\right] & 0 \leqslant t \leqslant 1 \\
\frac{2}{3} e^{-3 t}\left(e^{+3}-1\right) & =\frac{2}{3}\left[e^{-3(t-1)}-e^{-3 t}\right] \quad 1 \leqslant t \leqslant \infty
\end{array}, \$\right. \text {. }
\end{aligned}
$$

$\frac{\text { Case II }}{0 \leqslant t<1}$ partial overlap.

t	0	1
$x(t) * h(t)$	0	$\frac{2}{3}\left(1-e^{-3}\right)$

$$
\begin{aligned}
& \int_{0}^{t}(1)\left(2 e^{-3 t}\right) u(t) d \tau=-\left.\frac{2}{3} e^{-3 t}\right|_{0} ^{t} \\
& =\frac{-2}{3}\left[e^{-3 t}-1\right]=\frac{2}{3}\left[1-e^{-3 t}\right]
\end{aligned}
$$

case III

$$
\left.\begin{array}{l}
\int_{t-1}^{t}(1)\left(2 e^{-3 x}\right) d t \tag{125}
\end{array}\right)=\frac{2}{3}\left[e^{-3 t}-e^{-3(t-1)}\right]
$$

Problem 3
a) $\quad T_{0}=\frac{4}{(\mathrm{sec})}, \quad f_{0}=\frac{1}{4}=\frac{0.25}{\left(\mathrm{H}_{3}\right)} \quad \Rightarrow \omega_{0}=\frac{2 \pi}{4}=\frac{\pi}{2} \mathrm{rad} / \mathrm{sec}$
b) Determine the Trignometric Fourier Series representations of $x(t)$

$$
\begin{equation*}
x(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n \omega_{0} t+\sum_{n=1}^{\infty} b_{n} \sin n \omega_{0} t \tag{63}
\end{equation*}
$$

- The signal is odd symmetric $\Rightarrow a_{n}=0$ for $n: 1 \xrightarrow{\text { to }} \infty$
- By inspection the average value of $x(t)=0 \Rightarrow a_{0}=0$

$$
\begin{array}{rlrl}
b_{n} & =\frac{2}{T_{0}} \int_{T_{0}} x(t) \sin \left(n \omega_{0} t\right) d t \quad & 0 d d * d o d=\text { even } \tag{0.5}\\
& =\frac{2}{4} \int_{-2}^{1} x(t) \sin \left(\frac{2 \pi n}{4} t\right) d t=\frac{1}{2} 2 \int_{0}^{1}(1) \sin \left(\frac{\pi n}{2} t\right) d t \\
& =\left.\frac{-2}{n \pi} \cos \left(\frac{n \pi t}{2}\right)\right|_{0} ^{1}=\frac{-2}{n \pi}\left[\cos \frac{n \pi}{2}-1\right]
\end{array}
$$

(11) $=\frac{2}{n \pi}\left[1-\cos \frac{n \pi}{2}\right]$
for add value of n

$$
\Rightarrow b_{n}=\frac{2}{n \pi}
$$

for coven values of n

$$
b_{n}=\left\{\begin{array}{cc}
\frac{2}{n \pi} & \text { for add } n \tag{2}\\
\frac{4}{n \pi} & n=2,6,10,14,18, \ldots \\
0 & n=4,8,12,16,20
\end{array}\right.
$$

c) $P=\frac{1}{T_{0}} \int_{T_{0}}|x(t)|^{2} d t=\frac{1}{4}\left[\int_{-1}^{0}(-1)^{2} d t+\int_{0}^{1}(1)^{2} d t\right]=\frac{1}{2}$
$E=$ area under Square of the sigurd $=\int_{-\infty}^{\infty}|x(t)|^{2} d t$

$$
=\infty
$$

we many write

$$
x(t)=\sum_{n=1}^{\infty} \frac{2}{n \pi}\left[1-\cos \frac{n \pi}{2}\right] \sin \frac{n \pi}{2} t
$$

