King Fahd University of Petroleum & Minerals
Electrical Engineering Department
EE 207 – Signals and Systems

Major I

November 18, 2008

Time Allowed 1 ½ Hours

Student Name : _____Key______________________________
Student ID Number : ______0_________

<table>
<thead>
<tr>
<th>Problem</th>
<th>Max Score</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem 1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Problem 2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Problem 3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
Problem 1:

a. (3 marks) Express the given signal in terms of singularity functions

\[x(t) \]

b. (3 marks) For the signal \(g(t) \) shown in the Figure below, sketch the signal \(10g(4-2t) \).

Show all the steps.

c. (4 marks) A given system is described by the following relation,

\[y(t) = x^4(t+2)+5t \] where \(x(t) \) is the input signal and \(y(t) \) is the output signal.

Classify the above system as to linearity, causality, and time invariance (justify your answer).

Problem 2:

a. (2 marks) The impulse response of a LTI system is given by:

\[h(t) = \frac{1}{T_o} e^{-t/T_o} u(t) \]

find the step response \(a(t) \) [i.e. the response due to a unit step input \(x(t) = u(t) \)].

b. (3 marks) Now consider the following input signal \(x(t) \):

\[x(t) \]

Find the output signal when the input is \(x(t) \) above.

[Hint: It is useful to consider the answer to part (a)].
c. **(5 marks)** Determine the convolution \(y(t) \) of the following 2 signals, and plot it. Show all your work in details.

\[
\begin{align*}
x(t) & = 2e^{-3t}u(t) \\
h(t) & = u(t)
\end{align*}
\]

Problem 3:

A periodic signal \(x(t) \) is shown below.

\[
\begin{align*}
x(t) & = 1 - 1 - 1 1 3 4 5 \quad t
\end{align*}
\]

a. **(2 marks)** Determine the fundamental period \(T_0 \) and fundamental frequency \(f_0 \) of the signal \(x(t) \)

b. **(5 marks)** Determine the Trigonometric Fourier Series representation of \(x(t) \) (show your work)

c. **(3 marks)** Determine the power and the energy of the signal \(x(t) \).
Problem 1:

a) \(2r(t+1) - 2r(t) + u(t) = 3u(t-3) \)

b) \(10 \log(4.2t) \equiv 10 \log[-2(t-2)] \)

- There are four operations.
 1. Amplitude scaling by 10 \(10 \log(t) \)
 2. Time compression by a factor of 2.
 3. Time inversion.
 4. Time shifting by 2 units to the right.

For the given operations, we can check the time operation by

\[
\begin{align*}
t' &= 4.2t \\
t &= 2 - \frac{t'}{2}
\end{align*}
\]

<table>
<thead>
<tr>
<th>t</th>
<th>6</th>
<th>12</th>
<th>-1</th>
<th>-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t'</td>
<td>12</td>
<td>24</td>
<td>-1</td>
<td>-4</td>
</tr>
</tbody>
</table>

- Amplitude scale by 10 units

- Time point 6 \(\rightarrow\) -1
- Time point 12 \(\rightarrow\) -4

- The system is not linear because it is proportional to the fourth power of \(x(t) \)

\[x_1 + x_2 \neq (x_1 + x_2)^4 \]

- The system is not causal because for example, the output \(y \) at \(t = 1.5 \) depends on the input at \(t = 3 \) sec.

- The system is time variant because the relation changes with time due to the exponential time term \(e^{t} \)

\[
\begin{align*}
at t = 1 \text{ sec} & \quad y(t) = x^4(t+2) + 5 \quad \text{rel. not the same} \\
at t = 2 \text{ sec} & \quad y(t) = x^4(t+2) + 10 \quad \text{hence time varying}
\end{align*}
\]
Problem 2:

a) For LTI, \(a(t) = \int_{-\infty}^{t} h(z) \, dz \)

\[
\mathcal{A}(\tau) = \int_{-\infty}^{\tau} \left(\frac{1}{\tau_0} \right) e^{-z/\tau_0} u(t) \, dz
\]

\[
= \frac{1}{\tau_0} \int_{0}^{t} e^{-z/\tau_0} \, dz = -\frac{\tau}{\tau_0} e^{-\tau/\tau_0} \quad \text{for} \quad t \leq 0
\]

\[
= 1 - e^{-t/\tau_0}
\]

\[
\Rightarrow \quad a(t) = \left(1 - e^{-t/\tau_0} \right) u(t)
\]

b) \(x(t) = u(t) - 2u(t-1) + u(t+2) \)

Since the system is linear,

\[
y(t) = (1 - e^{-t/\tau_0}) u(t) - 2(1 - e^{-t/\tau_0}) u(t-1) + (1 - e^{-t/\tau_0}) u(t-2)
\]

c) \(x(t) = u(t) \) and \(h(t) = 2 e^{-t/\tau_0} u(t) \)

\[
x(t) \preceq h(t) = \begin{cases}
0 & t < 0 \\
\frac{2}{3} \left[1 - e^{3t} \right] & 0 \leq t \leq 1 \\
\frac{2}{3} e^{3(t+1)} & 1 \leq t < \infty
\end{cases}
\]

Case I: \(t < 0 \) no overlap

\(x(t) \preceq h(t) = 0 \)

Case II: \(0 \leq t < 1 \) partial overlap

\[
\int_{0}^{t} \left(2 e^{-z/\tau_0} \right) u(t) \, dz = -\frac{2}{3} e^{2t} \quad \text{for} \quad t < 0
\]

\[
= \frac{2}{3} \left[e^{3} - 1 \right] = \frac{2}{3} \left[1 - e^{3t} \right]
\]

Case III: \(1 \leq t \leq \infty \) full overlap

\[
\int_{t-1}^{t} \left(2 e^{-z/\tau_0} \right) u(t) \, dz = \frac{2}{3} \left[e^{3} - 1 - e^{-3(t+1)} \right]
\]

\[
= \frac{2}{3} \left[e^{3} - 1 \right] - \frac{2}{3} e^{3(t+1)}
\]

\[
= \frac{2}{3} \left[1 - e^{3} \right] - \frac{2}{3} \left(1 - e^{3} \right)
\]

\[
= \frac{2}{3} \left[1 - e^{3} \right]
\]

\[
0.633 = \frac{2}{3} \left[1 - e^{3} \right]
\]

\[
0.633 \approx \frac{2}{3} \left[1 - e^{3} \right]
\]
Problem 3

a) \[T_0 = 4 \text{ sec}, \quad f_0 = \frac{1}{4} = 0.25 \quad \Rightarrow \omega_0 = \frac{2\pi}{4} = \frac{\pi}{2} \text{ rad/sec} \]

b) Determine the Trigonometric Fourier Series representations of \(x(t) \)

\[x(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_0 t + \sum_{n=1}^{\infty} b_n \sin n\omega_0 t \]

- The signal is odd symmetric \(\Rightarrow a_n = 0 \) for \(n \geq 1 \)
- By inspection the average value of \(x(t) = 0 \) \(\Rightarrow a_0 = 0 \)

\[b_n = \frac{2}{T_0} \int_{T_0} x(t) \sin (n\omega_0 t) \, dt \]

\[= \frac{2}{4} \int_{T_0} x(t) \sin \left(\frac{2\pi n t}{4} \right) \, dt = \frac{1}{2} \int_{0}^{1} x(t) \sin \left(\frac{\pi n t}{2} \right) \, dt \]

\[= -\frac{2}{n\pi} \cos \left(\frac{\pi n t}{2} \right) \bigg|_{0}^{1} = -\frac{2}{n\pi} \left[\cos \frac{n\pi}{2} - 1 \right] \]

\[= \frac{2}{n\pi} \left[1 - \cos \frac{n\pi}{2} \right] \quad \text{for odd values of } n \quad \cos \frac{n\pi}{2} = 0 \]

\[b_n = \frac{2}{n\pi} \quad \text{for odd values of } n \]

\[b_n = \frac{4}{n\pi} \quad \text{for even values of } n \]

\[b_n = \frac{2}{n\pi} \left[1 - (-1)^n \right] = \begin{cases} \frac{4}{n\pi} & n = 2, 6, 10, 14, 18, \ldots \\ \frac{2}{n\pi} & n = 4, 8, 12, 16, 20, \ldots \\ 0 & n = 1, 3, 5, 7, \ldots \end{cases} \]

\[c) \quad P = \frac{1}{T_0} \int_{T_0} |x(t)|^2 \, dt = \frac{1}{4} \left[\int_{-1}^{0} (\cdot)^2 \, dt + \int_{0}^{1} (\cdot)^2 \, dt \right] = \frac{1}{2} \]

\[E = \text{area under Square of the signal} = \int_{-\infty}^{\infty} |x(t)| \, dt = \infty \]

we may write

\[x(t) = \sum_{n=1}^{\infty} \frac{2}{n\pi} \left[1 - \cos \frac{n\pi}{2} \right] \sin \frac{n\pi}{2} \, t \]