KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS

EE 422 Antenna Theory

Problem Session \# 1

1. A transmission line has the following line constants:
$\mathrm{R}=5 \Omega / \mathrm{m}, \mathrm{L}=0.2 \mu \mathrm{H} / \mathrm{m}, \mathrm{G}=0.01 \mathrm{mho} / \mathrm{mi}, \mathrm{C}=300 \mathrm{pF} / \mathrm{m}, \mathrm{f}=500 \mathrm{MHz}$. Calculate the following for the line:
a. Characteristic impedance
b. Propagation constant
c. Attenuation constant
d. Phase constant
e. Phase velocity

Repeat your calculations in the absence of loss ($\mathrm{R}=\mathrm{G}=0$).
2. A radio transmitter is connected to an antenna having an impedance $80+\mathrm{j} 40 \Omega$ with a 50 Ω coaxial cable. If the 50Ω transmitter can deliver 30 W when connected to a 50Ω load, how much power is delivered to the antenna?
3. A sector pattern has uniform radiation intensity over a specified angular region and is zero elsewhere.

$$
F(\theta)=\left\{\begin{array}{cc}
1 & \frac{\pi}{2}-\alpha<\theta<\frac{\pi}{2}+\alpha \\
0 & \text { elsewhere }
\end{array}\right.
$$

Derive an expression for the maximum directivity.
4. Calculate the gain of the antenna which has a radiation efficiency of 95% and the following radiation pattern:

$$
F(\theta)=\left\{\begin{array}{lr}
1 & 0^{\circ} \leq \theta<20^{\circ} \\
0.707 & 20^{\circ} \leq \theta<120^{\circ} \\
0 & 120^{\circ} \leq \theta<180^{\circ}
\end{array}\right.
$$

5. An antenna has a radiation pattern which is independent of ϕ but varies with θ as follows:
$\mathrm{U}=1.0 \quad$ for $\quad 0^{\circ} \leq \theta \leq 30^{\circ}$
$\mathrm{U}=0.5$ for $60^{\circ} \leq \theta \leq 120^{\circ}$
$\mathrm{U}=0.707$ for $150^{\circ} \leq \theta \leq 180^{\circ}$
$\mathrm{U}=0.0$ for $30^{\circ} \leq \theta \leq 60^{\circ}$ and $120^{\circ} \leq \theta \leq 150^{\circ}$
Find the directivity in the direction $\theta=90^{\circ}$ and the maximum directivity.
6. An isotropic point source radiates energy equally in all directions. The total power delivered to the radiator is 100 kW . Calculate the power density, radiation intensity, and electric field strength at a distance of 5 km from the radiator.
7. An antenna has the following radiation intensity function:
$U(\theta, \phi)=U_{o}(1-|\cos \theta|) \sin ^{2} \phi \quad$ for $0^{\circ} \leq \theta \leq 180^{\circ}$ and $0^{\circ} \leq \phi \leq 180^{\circ}$
a) Indicate the direction of maximum radiation.
b) Calculate the maximum directivity.
c) Calculate the half-power beam-width in both azimuth and elevation planes.
d) Plot the normalized radiation pattern as a function of θ for $\phi=\phi_{\max }$.
