> KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS DEPARIMENT OF E FCTRICAL ENGINEFRING

EE 422	ANTENNA THEORY	EXAMINATION I
Second Semester (092)		March 28, 2010

NAME :	
I.D. \# $:$	

Q. 1 The normalised radiation intensity of an antenna is given by: $U(\theta, \phi)=\sin ^{4} \theta \cos ^{2} \phi$. The intensity exists in the region $0 \leq \theta \leq \pi$ and $-\frac{\pi}{2} \leq \phi \leq \frac{\pi}{2}$, and is zero elsewhere. Find:
a. The exact maximum directivity (dimensionless and in dB).
b. The azimuth and elevation half power beam-widths. Specify which planes you are selecting.
c. The antenna beam solid angle $\left(\Omega_{A}\right)$.
d. The antenna maximum power gain, if the antenna loss resistance is 5Ω and its radiation resistance in 120Ω.

Q. 2

a. Calculate the exact directivity of an antenna with radiation intensity given by: $U=U_{m} \cos ^{N} \theta$ for $0 \leq \theta \leq \frac{\pi}{2}$ and $0 \leq \phi \leq 2 \pi$.
b. Calculate the half-power beam-widths in two perpendicular planes containing the direction of maximum radiation, when $\mathrm{N}=3$.
c. Calculate the approximate directivity when $\mathrm{N}=3$, and find the percentage error from the exact value.
Q. 3 a. Derive Friis Transmission formula, i.e. the received power P_{r} in a receiving antenna in terms of the transmitted power P_{t} and the transmitting and receiving antenna parameters.
b. A transmitting and receiving antennas are separated by 25 km . The frequency of operation is 10 GHz . The maximum effective apertures for both antennas are $1.5 \mathrm{~m}^{2}$ each. The VSWR on the transmitting and receiving lines is 1.5 . Calculate the received power if the power delivered to the transmitting antenna is 100 W and both antennas are polarization matched.

PROBLEM \#	Q. 1	Q.2	Q.3	TOTAL
Marks				
Maximum	$\mathbf{3 5}$	$\mathbf{3 0}$	$\mathbf{3 5}$	$\mathbf{1 0 0}$

