King Fahd University of Petroleum and Minerals Electrical Engineering Department

EE200: Digital Logic Circuit Design First Semester 2010-2011 (101)

A. Course In	nformation
--------------	------------

Text Book:	Digital Design (4 th Ed	ition) b	y M. M. Mano				
Course	Name			Office	Ph	one	Sections
Coordinator:	Dr. Mohammad S. Sharawi, msharawi@kfupm.edu.sa			59/1091	48	310	
Instructors:	Your Section Instructor is: Dr. Mahmoud M. Dawoud , <u>mmdawoud@kfupm.edu.sa</u> Office Hours: 8:00 am– 8:50 am, SMW		59/2070	2299		01 and 03	
	Or by appointment						
Lab	Name		Office	Phone		Sections	
Coordinator:	Dr. Essam Hassan, ehassan@kfupm.edu.sa			59-2100	2370		
Grading:	Assignments and Quizzes	Laboratory		Design Project	Two Majors		Final
	15%		20%	5%	30)%	30%
	First Major	Second Major		Lab Final		Final	
Exams Dates:	Mon. October 25, 2010	Mon. I	December 13, 2010	January 8-12,		Per t	he schedule
Exams Times:	7 – 9 PM	7 – 9 PM		Your Lab time		from the registrar's	
Exams Places:	To be announced	To be announced		In your La	ab		office
Important Dates:	Last day to drop the c without a permanent r			rop the course V" grade	Last day to drop all courses with "WP/WF" Thru Registrar's office.		
	October 6, 2010	ber 6, 2010 Novemb		er 3, 2010	January 9, 2011		

- **Note #1:** Final Exam is <u>coordinated</u> and <u>comprehensive</u> (i.e. it is common for all sections and covers chapter 1-7 as described in the syllabus and class notes). Lab Final will be given by the Lab instructor in the Lab during the normal Lab session. <u>Major Exams are also coordinated</u>.
- **Note #2:** According to the rules and regulations of KFUPM, attendance is **MANDATORY**. More than **8** unexcused absences will be reported to the registrar office and result in a **GRADE of DN** regardless of the student's grade.
- **Note #3:** It is your responsibility to solve the *practice problems* as soon as the material is covered in the class. Solution will be posted on <u>WebCT(http://ocw.kfupm.edu.sa/</u>). The *practice problems* set will not be collected.
- **Note #4:** Your instructor will give you other home work assignments which will be collected and graded. Quizzes will be given regularly based on the homework and the *practice problems*..
- Note #5: A design project will be assigned around week 10 and will be due at the end of week 14.
- Note #6: Class notes, announcements and HW solutions will be posted on the class webpage at: <u>http://faculty.kfupm.edu.sa/EE/mmdawoud/</u> it is your responsibility to check announcements regularly.

B. Course Details.

1. Course (Catalog) Description

Number systems & codes. Logic gates. Boolean Algebra. Karnaugh maps. Analysis and synthesis of combinational systems, decoders, multiplexers, adders and subtractors, PLA's. Types of flip-flops. Memory concept. Registers. Introduction to sequential circuit design.

2. Prerequisites(s)

Calculus I (MATH 101) General Physics I (PHYS 101)

3. Course objectives are to

- 1. Introduce the students to the the digital principles with emphasis on logic design.
- 2. Familiarize the students with the necessary mathematical tools such as number systems, codes, and Boolean algebra.
- 3. learn the principles of analysis and design of combinational logic circuits
- 4. learn the principles of analysis and design of sequential logic circuits.

4. Learning Outcomes

After successfully completing the course, the students will be able to

Outcome1:	apply knowledge of number systems, codes and Boolean algebra to the analysis and design of digital logic circuits.
Outcome 2:	identify, formulate, and solve engineering problems in the area of digital logic circuit design.
Outcome 3:	use the techniques, skills, and modern engineering tools such as logic works, necessary for engineering practice.
Outcome 4:	to function on multi-disciplinary teams through digital circuit experiments and projects.
Outcome 5:	to design a digital system, components or process to meet desired needs within realistic constraints.

5. Topics Covered

- Binary Numbers, Number Base Conversions,
- Complements, Signed Binary Numbers, Binary Codes,
- Binary Logic, Boolean Algebra and digital logic gates,
- Forms of logic functions and K-map simplification,
- Analysis and design of combinational logic circuits,
- Adders, Multipliers, Magnitude Comparator, Decoders, Multiplexers,
- Programmable logic devices,
- Flip-flops and sequential circuits,
- Registers and counters.

6. References.

• *Fundamentals of Digital Logic with Verilog Design*, S. Brown and Z. Vranesic, 2nd Edition, McGraw Hill, 2008.

• Logic and Computer Design Fundamentals, M. Morris Mano and C. R. Kime, 4th Edition, Prentice Hall, 2008.

Week	Date	Topics	Sections	Labs/Prob. Sessions
1	Sep. 25	Binary Numbers, Number Base Conversions,	1.1-1.3	No Lab.
2	Oct. 2	Octal & Hexadecimal Numbers, Complements, Signed Binary Numbers, Binary Codes	1.4-1.7	Introduction to Lab. Equipment, Exp#1: Binary & Decimal Numbers
3	Oct. 9	Binary Logic, Boolean Algebra: Axioms, Theorems & Properties. Boolean functions, Digital Logic Gates	1.9, 2.1-2.4 2.7-2.8	No Lab.
4	Oct. 16	Canonical & Standard Forms, More Logical Operations, Simplification of Boolean functions Using K-Maps, Product of Sums Simplification.	2.5-2.6 3.1-3.5	Exp#2: Digital Logic Gates
5	Oct. 23	Don't-care Conditions, NAND, NOR, and Other Two Level Implementations, Exclusive-OR Function.	3.6-3.9	Exp#3: Introduction to LogicWorks Exam # 1
6	Oct. 30	Combinational Logic: Analysis and Design Procedures, Code Conversion, Adder circuits.	4.1-4.4	Exp#4: Boolean Algebra
7	Nov. 6	Subtractors, Decimal Adder, binary multiplier, Magnitude Comparator, Decoders.	4.5-4.8	Exp#5: Simplification
		EID Al-Fitr Break		
8	Nov. 27	Encoders and Multiplexers, Random Access Memory.	4.9-4.11, 7.2, 7.3	Exp#6: Code Conversion
10	Dec. 4	Programmable Logic, PLD'S, ROM, Programmable Logic Array, Programmable Array Logic.	7.5-7.7	Exp#7: Adders/Subtractors
11	Dec. 11	Sequential Circuits, Latches, Flip-flops, Characteristic Tables	5.1-5.4	Exp#8: Multiplexers Exam # 2
12	Dec. 18	Analysis of Clocked Sequential Circuits, State Reduction and Assignment.	5.5, 5.7	Exp#9: Design with ROM's
13	Dec. 25	Flip-flop Excitation Tables, Design Procedure, Synthesis using different flip flops.	5.8	Exp#10: Flip-flops
14	Jan. 1	Registers and Shift Registers	6.1, 6.2	Exp#11: Counters & Sequential Logic
15	Jan. 8	Ripple Counters, Synchronous Counters and other counters.	6.3-6.5	Lab Final
16	Jan. 15	Revision.		

C. Tentative Course Outline and Schedule

D. Practice Problems

Chapter 1:	5,7,9,18,20,29,35
Chapter 2:	2, 8,12,15,18,20
Chapter 3:	2,7,12,15,19,24
Chapter 4:	5,11,13,20,25,29,31,35
Chapter 7:	15,18,19,21,25
Chapter 5:	2,6,9,12,19
Chapter 6:	5,7,8,12,21