KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS DEPARTMENT OF ELECTRICAL ENGINEERING

EE 200
DIGITAL LOGIC CIRCUIT DESIGN
EXAMINATION II
December 5, 2007

NAME :						
I.D. \# :						
SECTION :	1	2	3	4	5	

PROBLEM \#	SCORE	MAXIMUM
1.		40
2.		30
3.		30
TOTAL		100

Q.\# 1)

Design a combinational circuit that implements the following Boolean functions:

$$
\begin{aligned}
& F_{1}(A, B, C, D)=\sum(0,2,8,9,10,11,13,15) \\
& F_{2}(A, B, C, D)=\Pi(0,2,8,10,13,15)
\end{aligned}
$$

1. using a decoder made with NAND gates and external gates. Determine the type of external gates.
2. Using a PLA with the minimum number of product terms. Determine the size of the PLA and its program table.
3. Draw the logic circuit of the PLA showing the fuse pattern.

Q \# 2)
In the logic circuit shown below, the inputs are $x_{2} x_{1} x_{0}$ and the final output is F.
a. Derive the truth table that describes the operation of this circuit. Show the logic values at $D_{0}, D_{1}, D_{2}, D_{3}, A, B, V$ and F
b. Find out what the output function F represents in terms of the input variables.

Q \# 3)
You would like to build a circuit that implements the function
$F(A, B, C, D)=A^{\prime} B+A^{\prime} C+A^{\prime} D^{\prime}+B D^{\prime}+A B^{\prime} C^{\prime} D$

Only a 4×4 ROM and a 4×1 MUX are available. Program the ROM in the following circuit to implement the function F.

