KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS DEPARTMENT OF ELECTRICAL ENGINEERING

EE 200
DIGITAL LOGIC CIRCUIT DESIGN
EXAMINATION I
October 24, 2007

| NAME : |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I.D. \# : |  |  |  |  |  |  |
| SECTION : | 1 | 2 | 3 | 4 | 5 |  |


| PROBLEM \# | SCORE | MAXIMUM |
| :---: | :---: | :---: |
| 1. |  | 25 |
| 2. |  | 25 |
| 3. |  | 25 |
| 4. |  | 25 |
| TOTAL |  | 100 |

Q.\# 1)
a. Convert the following octal number $(751.4)_{8}$ to decimal, binary and hexadecimal.
b. Determine the value of the base x , such that $(204)_{\mathrm{x}}=(114)_{8}$.
c. Perform the following binary arithmetic operations:

| 1) | $11110.11+110.1$ |
| :--- | :--- |
| 2) | $101101 \times 1011$ |

d. A 16 bit register has the state : 1001011101100101 . What is the decimal number in the register if it represents:

1) BCD code
2) Excess-3 code
3) 84-2-1 code

Q \# 2)
a. Perform the following arithmetic operation in binary using the signed 2 's complement representation for negative numbers. Use 8 bits to represent each number.
$(-125)+(+72)$
b. Simplify the following Boolean expressions to a minimum number of literals.

1. $\quad F(x, y, z)=x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y z+x y^{\prime} y z^{\prime}+x y^{\prime} z^{\prime}+x y^{\prime} z+x y z z^{\prime}$
2. $F(w, x, y, z)=w^{\prime} x^{\prime} y z+w x y+w^{\prime} y^{\prime}+x y^{\prime}+x^{\prime} y^{\prime}$

Q \# 3)
For the following Boolean function:
$F(A, B, C, D)=\left[\left(A+D^{\prime}\right) \cdot\left(B^{\prime}+C\right)\right]^{\prime}+\left[(C+D) \cdot\left(A C^{\prime}+B^{\prime}\left(D^{\prime}+C\right)\right)\right]^{\prime}+\left(A^{\prime}+B\right)^{\prime} \cdot C^{\prime} D$
a. Express F as a sum of Minterms.
b. Express F as a product of Maxterms.
c. Simplify F in sum of products (SOP) form using K-map.

## Q \# 4)

Consider the 2's complement operation on unsigned 4-bit binary numbers.
a. Prepare a truth table for the conversion of unsigned 4-bit binary numbers to their 2's complement equivalent. Use for the input side the symbols $\mathrm{A}=\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}$, and for the output side the symbols $\mathrm{T}=\mathrm{T}_{3} \mathrm{~T}_{2} \mathrm{~T}_{1} \mathrm{~T}_{0}$.
b. Using k-maps, give the minimal expression for each of the outputs in part (1).
c. Draw the complete circuit using random logic.

