KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF ELECTRICAL ENGINEERING

EE 200 DIGITAL LOGIC CIRCUIT DESIGN

EXAMINATION I

October 24, 2007

NAME :					
I.D. # :		_			
SECTION :	1	2	3	4	5

PROBLEM #	SCORE	MAXIMUM
1.		25
2.		25
3.		25
4.		25
TOTAL		100

Q.#1)

- a. Convert the following octal number $(751.4)_8$ to decimal, binary and hexadecimal.
- b. Determine the value of the base x, such that $(204)_x = (114)_8$.
- c. Perform the following **binary** arithmetic operations:
 - 1) 11110.11 + 110.1
 - 2) 101101 x 1011
- d. A 16 bit register has the state : 1001011101100101. What is the decimal number in the register if it represents:
 1) DCD
 - 1) BCD code 2) Excess-3 code 3) 84-2-1 code

Q # 2)

- a. Perform the following arithmetic operation in binary using the signed 2's complement representation for negative numbers. Use 8 bits to represent each number. (-125) + (+72)
- b. Simplify the following Boolean expressions to a minimum number of literals.
 - 1. F(x, y, z) = x'y'z' + x'y'z + x'yz' + xy'z' + xy'z + xyz'
 - 2. F(w, x, y, z) = w'x'yz + wxy + w'y' + xy' + x'y'

Q # 3)

For the following Boolean function:

$$F(A,B,C,D) = \left[\left(A + D' \right) \cdot \left(B' + C \right) \right]' + \left[\left(C + D \right) \cdot \left(A C' + B'(D' + C) \right) \right]' + \left(A' + B \right)' \cdot C' D$$

- a. Express F as a sum of Minterms.
- b. Express F as a product of Maxterms.
- c. Simplify F in sum of products (SOP) form using K-map.

Q # 4)

Consider the 2's complement operation on unsigned 4-bit binary numbers.

- a. Prepare a truth table for the conversion of unsigned 4-bit binary numbers to their 2's complement equivalent. Use for the input side the symbols $A=A_3A_2A_1A_0$, and for the output side the symbols $T=T_3T_2T_1T_0$.
- b. Using k-maps, give the minimal expression for each of the outputs in part (1).
- c. Draw the complete circuit using random logic.