KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF ELECTRICAL ENGINEERING

EE 672 SATELLITE COMMUNICATIONS EXAMINATION I

26 March, 2007

NAME :	
I.D. # :	

PROBLEM #	Q. 1	Q.2	Q.3	TOTAL
Marks				
Maximum	36	34	30	100

- Q.1 Answer the following questions. (a question may have more than one answer).
 - 1) The ground segment of a satellite communication system of the FSS type consists of:
 - a. Earth stations b. TT&C Ground station
 - c. Receiving antennas d. Regional networks e. Land mobile
 - 2) The advantages of using low earth orbits (LEO'S) for satellite communications are:
 - a. Global coverage area for the LEO satellite.
 - b. Better utilization of frequency spectrum through frequency re-use.
 - c. Reduction of transmission delay
 - d. Availability of direct broadcasting for home reception.
 - 3) The satellite speed at apogee, in an elliptical orbit, compared to its speed at perigee is:a. Fasterb. The samec. Slower.
 - 4) The x axis in the perifocal coordinate system is along:
 - a. The vernal equinox. b. The direction of perigee
 - c. The direction from the geo-centre towards the intersection of the equator with longitude 0° .
 - d. The direction of apogee.
 - 5) A satellite is located from a fixed point on earth, using:
 - a. Geocentric equatorial coordinate systemb. The perifocal coordinate system
 - 6) An earth station is located in Saudi Arabia, which is in the northern hemisphere, at a longitude of 45° east. In which part of the sky would you locate a satellite with a subsatellite point longitude of 7° west.

a.	North	b. North-East	c.	East	d.	South- East
e.	South	f. South-West	g.	West	h.	North-West

Q.2 Some orbital measurements for a hypothetical satellite are:

Semi-major axis = 15000 km

Eccentricity = 0.12

Mean anomaly $= 35^{\circ}$

Determine:

- a. The orbital period in hours, minutes, and seconds.
- b. The mean orbital angular velocity in radians per second.
- c. The maximum and minimum distances of the satellite from the centre of the earth during each orbital revolution.
- d. The time (expressed as a date, hour, minute, and second) of the next perigee passage after 00:00:00 UT on March 26, 1999.

$$(\mu = 3.9861352 \times 10^5 \text{ km}^3/\text{s}^2)$$
, earth radius = 6370 km) (Hint: Kepler's third law, $a^3 = \frac{\mu}{\omega^2}$)

..

Q.3 Calculate the look angles for an earth station at Dhahran, Saudi Arabia to establish communications with NILESAT 102 at 7.0° West. Dhahran location is 26.18° North and 50.08° East. Determine also the range of satellite positions that are visible from Dhahran.