KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS DEPARTMENT OF ELECTRICAL ENGINEERING

EE 200
DIGITAL LOGIC CIRCUIT DESIGN
EXAMINATION II
May 17, 2007

NAME :	
I.D. $\#$:	
SECTION :	

PROBLEM \#	SCORE	MAXIMUM
1.		25
2.		25
3.		25
4.		100
TOTAL		

Q \# 1)
Simplify the following function and implement it using
(i) NOR gates only
(ii) NAND gates only
(iii)OR-NAND
(iv)AND-NOR

$$
F(w, x, y, z)=w x^{\prime}+y^{\prime} z^{\prime}+w y z^{\prime}
$$

Q.\# 2)
a. Design a combinational circuit incrementer. (a circuit that adds one to a 3-bit binary number x, y, and z). Determine the required number of outputs (assign letters A,B,C,... for the outputs). Simplify the output functions Use Karnaugh maps and draw the logic circuit.
b. Design the circuit in (a) using a ROM. Determine the size of the ROM and its truth table.

Q \# 3)
Design a combinational circuit that implements the following Boolean functions:

$$
\begin{aligned}
& F_{1}(A, B, C, D)=A^{\prime} B C^{\prime}+A B C^{\prime} D^{\prime}+A B C^{\prime}+A^{\prime} B^{\prime} C+A B^{\prime} C \\
& F_{2}(A, B, C, D)=\Sigma(\mathbf{0 , 1 , 6 , 7 , 9 , 1 4 , 1 5)}
\end{aligned}
$$

1. using a decoder and OR gates
2. Using a PLA with the minimum number of product terms. Determine the size of the PLA and its program table.

Q \# 4)
a. Implement the following four variable function using an 8 X 1 multiplexer. Connect the variables $\underline{A, B}$, and C to the selection lines S_{2}, S_{1}, and S_{0} respectively.

$$
F(A, B, C, D)=\sum(3,4,6,9,11,12,13,14,15)
$$

b. AN 8 X 1 multiplexer has inputs B, C, and D connected to the selection lines $\mathrm{S}_{2}, \mathrm{~S}_{1}$, and S_{0} respectively. The data inputs I_{0} through I_{7} are as follows: $I_{1}=I_{2}=I_{7}=0 ; I_{3}=I_{5}=1 ; I_{0}=I_{4}=A$, and $\mathrm{I}_{6}=\mathrm{A}$ '. Determine the Boolean function that the multiplexer implements in a sum of minterms form.

