King Fahd Univesity of Petroleum \& Minerals Department of Electrical Engineering

EE200-03

Homework \# 5

1. Design a combinational circuit, using decoders and OR gates, that generates the 9's complement of a BCD digit. Use letters a, b, c,... for the inputs and w, $\mathrm{x}, \mathrm{y}, \ldots$. For the outputs.
2. A combinational circuit is specified by the following three Boolean functions:

$$
\begin{aligned}
& F_{1}(a, b, c)=\sum(2,4,7) \\
& F_{2}(a, b, c)=\sum(0,1,5) \\
& F_{3}(a, b, c)=\sum(0,2,3,4,6)
\end{aligned}
$$

Implement the circuit with a decoder constructed with NAND gates, similar to Fig. 4.19 of the textbook, and NAND or AND gates connected to the decoder outputs. Use a block diagram for the decoder. Minimize the number of inputs to the external gates.
3. Construct a 4-to-16 line decoder with five 2-to-4 line decoders with enable inputs.
4. Implement the following 4 -variable Boolean function using a $4 x 1$ multiplexer $F(w, x, y, z)=w x+x^{\prime} y^{\prime} z+w x\left(y+z^{\prime}\right)$
Connect the variables y and z to the selection lines S_{1} and S_{0} respectively.

