KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF ELECTRICAL ENGINEERING

EE 418 INTRODUCTION TO SATELLITE COMMUNICATIONS EXAMINATION I October 22, 2005

NAME :	
I.D. # :	

Q.1 Answer the following questions. (a question may have more than one answer)

- 1) Some advantages of using satellites in the geostationary orbit are: b. No frequency shift due to Doppler effects a. Use of hand held receivers c. Coverage of large area on the earth d. Reduction of transmission delay e. Provide communications 24 hours a day 2) An azimuth angle is determined to be in the North-West direction. The numeric range of this azimuth angle is? a. $0^{\circ} \rightarrow 90^{\circ}$ b. $90^{\circ} \rightarrow 180^{\circ}$ c. $180^{\circ} \rightarrow 270^{\circ}$ d. $270^{\circ} \rightarrow 360^{\circ}$ 3) The satellite speed at perigee, in an elliptical orbit, compared to its speed at apogee is: a. Faster b. The same c. Slower. 4) An earth station is located in Cape town (South Africa) at longitude -18.42° and latitude -33.92°. In which part of the sky would you locate a satellite with a subsatellite point longitude of $+7^{\circ}$? a. North b. North-East c. East d. South-East g. West e. South f. South-West h. North-West 5) The use of communication satellites in highly elliptical orbits has the following advantages: a. Provide 24 hour a-day communication. b. Provide coverage beyond latitudes of $\pm 76^{\circ}$. c. It provides relatively large bandwidth. d. Small Doppler shift. 6) The angle between the orbital plane and the equatorial plane is: a. The eccentric anomaly b. The true anomaly c. The inclination d. The right ascension of ascending node 7) The cross polar discrimination in a dual polarization system, where $|E_{11}| = 126 |E_{12}|$ is: c. - 21 dB d. -42 dB a. 21 dB b. 42 dB
- Q.2 Calculate the Julian date corresponding to 6:45 UT on April 18, 2006. How can you make use of this date in calculating the look angles to a given satellite? And what type of satellites?
- Q.3 Calculate the look angles for an earth station at Cairo, Egypt to establish communications with NILESAT at 7° West. Cairo location is 30.05° North and 31.25° East.

PROBLEM #	Q. 1	Q.2	Q.3	TOTAL
Marks				
Maximum	35	30	35	100

The Julian date at the beginning of each year

Year	Julian Date	Year	Julian Date
	2400000 +		2400000 +
1996	50083.5	2004	53005.5
1997	50449.5	2005	53371.5
1998	50814.5	2006	53736.5
1999	51179.5	2007	54101.5
2000	51544.5	2008	54466.5
2001	51910.5	2009	54832.5
2002	52275.5	2010	55197.5
2003	52640.5		

 $\cos(\gamma) = \cos(L_e)\cos(L_s)\cos(l_s - l_e) + \sin(L_e)\sin(L_s)$

$$\therefore \cos(El) = \frac{r_s \sin(\gamma)}{d} = \frac{\sin(\gamma)}{\sqrt{1 + \left(\frac{r_e}{r_s}\right)^2 - 2\left(\frac{r_e}{r_s}\right)\cos(\gamma)}}$$

The geo-synchronous radius $r_s = 42242 \text{ km}$

The earth's radius $r_e = 6370 \text{ km}$

$$a = \left| l_s - l_e \right|$$

 $c = |L_e - L_s|$

 $\therefore s = 0.5(a+c+\gamma)$

$$\alpha = 2 \tan^{-1} \sqrt{\frac{\sin(s-\gamma)\sin(s-|L_e|}{\sin(s)\sin(s-|l_e-l_s|})}$$