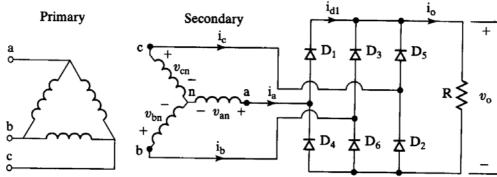
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DEPARTMENT OF ELECTRICAL ENGINEERING

EE460-01 POWER ELECTRONICS

EXAM	:	Ι
DATE	:	November 7, 2007
PLACE	:	BLDG. 59-1010
TIME	:	5:30-7:00 PM

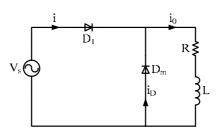
Student Nam	e:		
Student ID	:		
Instructors	:	Dr. Mahmoud Kassas	


Problem 1	
Problem 2	
Problem 3	
Total	

Problem 1 (10 points)

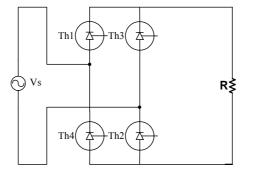
Three-phase bridge rectifier has a purely resistive load. Determine:

(a) The efficiency, η.	(1 point)
(b) The form factor, FF.	(1 point)
(c) The ripple factor, RF.	(1 point)
(d) The Transformer Utilization Factor, TUF.	(1 point)
(e) The PIV.	(1 point)
(f) The peak current and the rms current through the diode.	(2 points)
(g) Draw the current in phase C	(1.5 points)
(h) Draw the voltage across D6.	(1.5 points)


The rectifier delivers $I_{dc} = 60A$ at $V_{dc} = 280.2V$ & the source frequency is 60Hz.

Problem 2: (6 Points)

In the circuit shown below, the source voltage $v = 170 \sin 120\pi t$ V, R = 5 Ω , & L = 30 mH. Calculate the following:


- (a) The average value of the load current i_0 .
- (b) The steady-state value $I'_{0\pi} \& I'_{02\pi}$.
- (c) Draw the current i & i_D.

Problem 3: (9 points)

A single phase full converter in Fig. 1 is supplied from 120-V (rms) 60-Hz supply and the load resistance is $R=10\Omega$. If the average output voltage is 25% of the maximum possible average output voltage, calculate:

- (a) The delay angle α .
- (b) The average and rms thyristor currents.
- (c) The average and rms output currents.
- (d) The input power factor, PF.
- (e) Draw the voltage across the Th3.

- (2 points) (2 points) (2 points)
- (1 point)
- (2 points)

- (2 points)
- (2 points) (2 points)